Understanding electric motor insulation & temperature 

By on

Anyone specifying or using electric motors should have a basic understanding how the insulation is related to temperature. Three classes of insulation are in common use (with 'F' being the most common):

  • class B - with a maximum operating temperature of 130 oC
  • class F - with a maximum operating temperature of 155 oC
  • class H - with a maximum operating temperature of 180 oC

The image (which is form an ABB catalogue for their low voltage performance motors), shows how temperature rise is distributed across the insulation.

Typically motors are designed for a maximum ambient temperature of 40 oC.

The difference between the average winding temperature and any hot spot is limited and it is usual to allow a 10 oC margin for class 'B' and 'F' insulation and a 15 oC margin for class 'H'.

Considering the ambient temperature and hot spot allowance gives the maximum temperature rise within which the motor must be designed to operate (105 oC for class 'F' for example).

When specifying (buying) a motor there are a couple of options. An insulation class could be specified and the motor specified as designed to run within that class. Alternatively the motor could be specified for an insulation class, but be design to run at a low class (for example insulation class 'F', temperature rise 'B').

The advantage of the second method is that there is an inherent 25 oC safety margin - useful if you are in a region with high ambient temperatures or need to date the motor for some other reason. Running motors at a reduced temperature will also significantly extend the useful life.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Write your best report

Years ago I was told that you should always try to write the best report you can.  Many years later I still think on this as one of the better pieces of...

Maxwell's Equations - Introduction

Maxwell's Equations are a set of fundamental relationships, which govern how electric and magnetic fields interact. The equations explain how these fields...

DC Motor Operation

Coils of wire on the rotor carry a d.c. current which generates a magnetic field. A stator magnetic field is created using either permanent magnets or...

Back to Basics - Ohm’s Law

Electrical engineering has a multitude of laws and theorems. It is fair to say the Ohm's Law is one of the more widely known; it not the most known. Developed...

Power Transformers - An Introduction

One of the fundamental requirements of an alternating current distribution systems it to have the ability to change the magnitude of voltages.  It is more...

MIT OpenCourseWare

MIT OpenCourseWare, makes the materials used in teaching all MIT subjects available on the Web, free of charge, to any user in the world.

Differential protection, the good old days

This morning I was explaining how differential protection works to a junior engineer. To give him something to read I opened up the NPAG (Network Protection...

Microsoft OneNote

A couple of months ago I came Microsoft's OneNote and downloaded the 60 day free trail. Since then I have been using it regularly and now have a full license...

Battery Sizing

This article gives an introduction to IEEE 485 method for the selection and calculation of battery capacity.

Paternoster Lifts

These lifts were first built in 1884 by J. E. Hall and called a paternoster ("Our Father", the first two words of the Lord's Prayer in Latin) due to its...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note