Motor Efficiency Classification 

By on

Electric motors are one of the most widely used items of electrical equipment.  Improving motor efficiency benefits include, reduced power demand, lower operating costs and reduced environment impact. 

In recognising the impact of motors on both power generation requirements and environmental issues, regulation in many countries now dictate efficiency limits.  When specifying motors, both designers and purchasers should be concerned with efficiency performance.

Within the note, we look at both the European Efficiency Classification and IEC 60034 Efficiency Limits.  At the end we give some guidance on how to calculate the cost savings associated with the user of higher efficiency motors. 

European Efficiency Classification

CEMEPEfficiencies
European Efficiency Classification
The European Scheme to designate energy efficiency classes for low voltage AC motors has been in operation since 1999. The scheme established through co-opera ton between CEMEP and the European Commission is an important element of the European efforts to improve energy efficiency and thus reduce CO2 emissions.

How it works

Motors are defined by levels of efficiency per kW rating and the number of poles. The efficiency is expressed at both full load and 3/4 load and labels must appear on the motor.

Motors included in the scheme are defined as totally enclosed fan ventilated (normally IP 54 or IP 55), three phase AC, squirrel cage [[induction motor|induction motors]] in the range of 1.1 to 90 kW, rated for 400 V, 50 Hz, S1 duty class standard design.
 

Efficiency values

For motors designed 380 to 400 V with efficiency values based on 400 V.

2 pole motor specified efficiencies (%)
kW EFF1 EFF2 EFF3
1.1 >= 82.8 >= 76.2 < 76.2
1.5 >= 84.1 >= 78.5 < 78.5
2.2 >= 85.6 >= 81 < 81
3 >= 86.7 >= 82.6 < 82.6
4 >= 87.6 >= 84.2 < 84.2
5.5 >= 88.6 >= 85.7 < 85.7
7.5 >= 89.5 >= 87 < 87
11 >= 90.5 >= 88.4 < 88.4
15 >= 91.3 >= 89.4 < 89.4
18.5 >= 91.8 >= 90 < 90
22 >= 92.2 >= 90.5 < 90.5
30 >= 92.9 >= 91.4 < 91.4
37 >= 93.3 >= 92 < 92
45 >= 93.7 >= 92.5 < 92.5
55 >= 94 >= 93 < 93
75 >= 94.6 >= 93.6 < 93.6
90 >= 95 >= 93.9 < 93.9
4 pole motor specified efficiencies (%)
kW EFF1 EFF2 EFF3
>= 1.1 83.8 >= 76.2 < 76.2
>= 1.5 85 >= 78.5 < 78.5
>= 2.2 86.4 >= 81 < 81
>= 3 87.4 >= 82.6 < 82.6
>= 4 88.3 >= 84.2 < 84.2
>= 5.5 89.2 >= 85.7 < 85.7
>= 7.5 90.1 >= 87 < 87
>= 11 91 >= 88.4 <8 8.4
>= 15 91.8 >= 89.4 < 89.4
>= 18.5 92.2 >= 90 < 90
>= 22 92.6 >= 90.5 < 90.5
>= 30 93.2 >= 91.4 < 91.4
>= 37 93.6 >= 92 < 92
>= 45 93.9 >= 92.5 < 92.5
>= 55 94.2 >= 93 < 93
>= 75 94.7 >= 93.6 < 93.6
>= 90 95 >=9 3.9 < 93.9


IEC 60034 Efficiency Limits

Image(9)
IEC 60034 Efficiency Limits
IEC 60034-30 defines three efficiency classes for of single speed, three phase, cage induction motors.

IE1 - Standard efficiency (efficiency levels roughly equivalent to EFF2)

IE2 - High efficiency (efficiency levels roughly equivalent to EFF1, identical to EPAct in USA)

IE3 - Premium efficiency (identical to "NEMA
Premium" in the USA)

IEC 60034-30 covers almost all motors, with the notable exceptions of motors made solely for converter operation and motors completely integrated into a machine (and which cannot be tested separately) .

IEC 60034 Efficiency Limits
Efficiency limit values IEC 60034-30; 2008

Output
kw
IE1 - Standard Efficiency IE2 - High  Efficiency IE3 - Premium  Efficiency
2 pole 4 pole 6 pole 2 pole 4 pole 6 pole 2 pole 4 pole 6 pole
0.75 72.1 72.1 70.0 77.4 79.6 75.9 80.7 82.5 78.9
1.1 75.0 75.0 72.9 79.6 81.4 78.1 82.7 84.1 81.0
1.5 77.2 77.2 75.2 81.3 82.8 79.8 84.2 85.3 82.5
2.2 79.7 79.7 77.7 83.2 84.3 81.8 85.9 86.7 84.3
3 81.5 81.5 79.7 84.6 85.5 83.3 87.1 87.7 85.6
4 83.1 83.1 81.4 85.8 86.6 84.6 88.1 88.6 86.8
5.5 84.7 84.7 83.1 87.0 87.7 86.0 89.2 89.6 88.0
7.5 86.0 86.0 84.7 88.1 88.7 87.2 90.1 90.4 89.1
11 87.6 87.6 86.4 89.4 89.8 88.7 91.2 91.4 90.3
15 88.7 88.7 87.7 90.3 90.6 89.7 91.9 92.1 91.2
18.5 89.3 89.3 88.6 90.9 91.2 90.4 92.4 92.6 91.7
22 89.9 89.9 89.2 91.3 91.6 90.9 92.7 93.0 92.2
30 90.7 90.7 90.2 92.0 92.3 91.7 93.3 93.6 92.9
37 91.2 91.2 90.8 92.5 92.7 92.2 93.7 93.9 93.3
45 91.7 91.7 91.4 92.9 93.1 92.7 94.0 94.2 93.7
55 92.1 92.1 91.9 93.2 93.5 93.1 94.3 94.6 94.1
75 92.7 92.7 92.6 93.8 94.0 93.7 94.7 95.0 94.6
90 93.0 93.0 92.9 94.1 94.2 94.0 95.0 95.2 94.9
110 93.3 93.3 93.3 94.3 94.5 94.3 95.2 95.4 95.1
132 93.5 93.5 93.5 94.6 94.7 94.6 95.4 95.6 95.4
160 93.7 93.8 93.8 94.8 94.9 94.8 95.6 95.8 95.6
200 94.0 94.0 94.0 95.0 95.1 95.0 95.8 96.0 95.8
250 94.0 94.0 94.0 95.0 95.1 95.0 95.8 96.0 95.8
315 94.0 94.0 94.0 95.0 95.1 95.0 95.8 96.0 95.8
355 94.0 94.0 94.0 95.0 95.1 95.0 95.8 96.0 95.8
375 94.0 94.0 94.0 95.0 95.1 95.0 95.8 96.0 95.8

 

From June 16, 2011 machine builders are only permitted to use high-efficiency motors with a minimum efficiency class of IE2 (IEC 60034:2008). The new EU Directive 2005/32/EC is applicable to low-voltage asynchronous motors of 0.75 to 375 kW.

The aim of the change is that by reducing losses, carbon-dioxide emissions and operating costs are reduced.

Calculation of cost savings

A quick calculation of annual savings is given by:

myElectrical Equation
where:
  • hrs        = annual running time (hours)
  • kW        = motor rating in kW
  • %FL       = fraction of full load power motor is running at
  • Rate      = electricity cost per kWh
  • ηstd       = efficiency of standard motor
  • ηeff        = efficiency of better motor


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Useful Motor Technical Information

Sometimes it’s useful to be able to quickly lookup a piece of technical information.  This note is a collection of information related to motors, and in...

Equipment Verification (to IEC Standards)

One of the requirements to ensuring that everything works is to have equipment selected, manufactured and verified [tested] to IEC standards. Not all equipment...

Photovoltaic (PV) - Electrical Calculations

Photovoltaic (PV) cells (sometimes called solar cells) convert solar energy into electrical energy.  Every year more and more PV systems are installed...

Standard Cable & Wire Sizes

IEC 60228 is the International Electrotechnical Commission's international standard on conductors of insulated cables. Among other things, it defines a...

Cost Performance and Time

Often us engineers get so bogged down in equations, using software, producing drawings and writing specifications that this becomes the sole focus.   ...

3 Phase Loads

Three phase systems are derived from three separate windings, either connected in delta or star (wye). Each winding can be treated separately, leading...

Back to basics - the Watt (or kW)

When thinking about watts (W) or kilowatt (kW = 1000 W) it can be useful too keep in mind the fundamental ideas behind the unit. Watt is not a pure electrical...

How to Check a Circuit is Dead

If you want to check a circuit is dead (not live), you should always use the three point method. First check a known live circuit, then check the dead...

Tips for a better Low Voltage Protection Discrimination Study

Carrying out a protection system discrimination study is critical to ensure the correct functioning of  the electrical system in the event of faults. ...

Thermoplastic and Thermosetting Insulation

While there are a vast array of cable insulation materials, these are often divided into two general types; Thermoplastic or Thermosetting. For example...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note