Cable Sizing Application

Click here to register to use our cable sizing application

What Changed

So that we can focus all our efforts on our new application, we have retired our myElectrical.com cable sizing calculator. We recommend you now use our main cable sizing application over at myCableEngineering.com.

myCableEngineering.com

Cable Sizing Software - select, size and manage your power cables using myCableEngineering. All your cables, for all your projects.
  • LV and MV cables up to 33 kV with current capacity in accordance with BS 7671, ERA 69-30 and IEC 60502.
  • Positive and zero sequence impedance to IEC 60609. Voltage drop in accordance with CENELEC CLC/TR 50480.
  • Project management and team collaboration, with clear easy to read calculations and reports.

Our software is the only cloud-based solution and has been built from the ground up to be fully responsive - meaning you can access your cables from anywhere and on any device, desktop, tablet or smartphone.

Arc Flash Calculator

Calculation of arc flash incident energy and protection boundary in accordance with IEE Std. 1584 'IEEE Guide for Performing Arc-Flash Hazard Calculations'.

Sytem Details

Equipment Details

Arc Flash


Tip: registered users can save calculations.

Symbols

V - system voltage (kV)
Ibf - bolted three phase fault current (kA)
Ia - arcing current (kA)
E - incident energy (J/cm2)
EB - - incident energy at boundary distance (J/cm2)
En - - normalized incident energy (J/cm2)
t - arcing time (s)
D - distance from arc to person (mm)
CB - distance of boundary from arc point (mm)

Notes

  1. Boundary Energy can be set at 5.0 J/cm2 for bare skin or at the rating of any proposed PPE.
  2. The limit of 5.0 J/cm2 is that at which a person is likely to receive second degree burns.
  3. To convert J/cm2 to cal/cm2 multiply by 0.239

Gap and distance factors
Voltage (kV) Equipment Type Typical gap between
conductors (mm)
Distance factor,
x
0.208 - 1



Open Air 10-40 2.000
Switchgear 32 1.473
MCC and Panels 25 1.641
Cable 13 2.000
>1 - 5 Open Air 102 2.000
Switchgear 13-102 0.973
Cables 13 2.000
>5 -15 Open Air 13-153 2.000
Switchgear 153 0.973
Cables 13 2.000

For a more detailed explanation of the calculation, please see: Arc Flash Calculations Post


Maxwell's Equations - Gauss's Electric Field Law

Gauss's Electrical law defines the relation between charge ("Positive" & "Negative") and electric field.  The law was initially formulated by Carl Friedrich...

Earth Electrode Resistance

Earthing of electrical systems is essential for the correct functioning and the protecting of life and equipment in the event of faults.  The earth electrode...

Copyright Infringement

myElectrical does not support or promote the use of copyrighted material without the copyright owner's consent. If you believe that material for which...

myElectrical - Cable Sizing Tool Upgrade

Our IEE cable sizing was wrote a few years ago and had become rough around the edges. I thought it was time to give the tool a service. Unfortunately when...

Welcome back Bottle

‘Kept looking at a card, y’see? Kept looking at it. Welcome back Bottle. Gods below welcome home. The Crippled God A Tale of the Malazan Book of the...

Control Theory

Control theory looks at how systems work and are controlled from a mathematical view.  This note gives a brief introduction to some of the concepts – more...

IEEE Winds of Change

IEEE TV has a part series of videos on wind power and it's implication. For a really good overview to the technologies and issues around wind power, these...

How to Calculate Motor Starting Time

Request to look at induction motor starting time have come up a few times on the site. Hopefully in this post, I give you guys some idea on how to calculate...

DC Motor Operation

Coils of wire on the rotor carry a d.c. current which generates a magnetic field. A stator magnetic field is created using either permanent magnets or...

IEC 60287 Current Capacity of Cables - Rated Current

In the previous note we looked at the approach taken by the standard to the sizing of cables and illustrated this with an example.  We then looked at one...