Arc Flash Calculations 

By on

ArcFlash
Arc Flash
Working in the vicinity of electrical equipment poses an hazard.  In addition to electric shock hazard, fault currents passing through air causes Arc Flash. 

During arc flash, temperatures of 20,000 oC for several metres around equipment can exist, resulting in severe burn injuries.  Quickly expanding air and vaporization of metals causes high pressures, sound and shrapnel leading to multiple types of injuries.

To protect people a risk analysis on the arc flash hazard is carried out to better understand what may occur.  Appropriate procedures and personal protective equipment are then employed to minimise potential injuries.

When evaluating arc flash there are two main considerations, 1) the incident energy in the arc flash and 2) flash protection boundary.  I will be looking at the calculation of these two parameters in terms of IEE Std. 1584 'IEEE Guide for Performing Arc-Flash Hazard Calculations'. 

IEE 1584 Calculation Method

Symbols and their meaning:

V  -    system voltage (kV)
Ibf    -    bolted three phase fault current (kA)
Ia   -    arcing current (kA)
E   -    incident energy (J/cm2)
EB  - incident energy at boundary distance (J/cm2)
En  - normalized incident energy (J/cm2)
t    -    arcing time (s)
D   - distance from arc to person (mm)
CB  - distance of boundary from arc point (mm)

Arcing Current

In order to determine both the flash protection boundary and incident energy, first the arcing current needs to be calculated.

For system voltages under 1000 V:

  log 10 ( I a )=K+0.662 log 10 ( I bf )+0.0966V+0.000526G+0.5588Vlo g 10 ( I bf )0.00304 G log 10 ( I bf )

Where:

K = -0.153 for open configurations and -0.097 for box configurations

For system voltages above 1000 V:

  log 10 ( I a )=0.00402+0.983 log 10 ( I bf )

The arcing current is then given by:

  I a = 10 log 10 ( I a )

Incident Energy

To calculated the incident energy, first normalized incident energy is calculated.  The result of this calculation is the incident energy for a arc duration to 0.2 s and at a distance from the arc point to the person of 610 mm.  Once the normalized energy has been calculated, this is then adjusted to reflect the actual arcing time and distance.

The normalized incident energy is given by:

   log 10 ( E n )= K 1 + K 2 +1.081 log 0 ( I a )+0.0011G

  E n = 10 log 10 ( E n )

Where:

K1 = -0.792 for open configurations and -0.555 for boxed configurations

K2 = 0 for ungrounded or high resistance ground systems and -0.113 for grounded systems

G = the conductor gap (see table below)

The incident energy is then given by:

  E=4.184 C f E n ( t 0.2 )( 610 x D x )     - voltages ≤ 15 kV and gaps ≤ 152 mm

Where:

Cf    = 1.0 for voltages greater than 1000 V and 1.5 for voltages less than 1000 V

x    = is a distance exponent from the table below

  E=2.142× 10 6 V I bf ( t D 2 ) - voltages > 15 kV or gaps > 152mm

Note: for voltages greater than 15 kV, it is not necessary to first calculate En 

Note: to convert J/cm2 to cal/cm2 multiply by 0.239

Gap and distance factors

Voltage (kV)

Equipment Type
Typical gap between
conductors (mm)
Distance factor,
x
0.208 - 1

Open Air 10-40 2.000
Switchgear 32 1.473
MCC and Panels 25 1.641
Cable 13 2.000
>1 - 5 Open Air 102 2.000
Switchgear 13-102 0.973
Cables 13 2.000
>5 -15 Open Air 13-153 2.000
Switchgear 153 0.973
Cables 13 2.000

Flash Protection Boundary

The flash boundary is the distance from the arc point to a location when the incident energy is less than a given value.  Knowing the incident energy, the flash boundary distance is given by:

   D B = [ 4.184 C f E n ( t 0.2 )( 610 x E B ) ] 1 x - voltages ≤ 15 kV and gaps ≤ 152 mm

  D B = 2.142× 10 6 V I bf ( t E B ) - voltages > 15 kV or gaps > 152 mm

Where:

Cf = 1.0 for voltages greater than 1000 V and 1.0 for voltages less than 1000 V

x = is a distance exponent from the table above

EB can be set at 5.0 J/cm2 for bare skin or at the rating of any proposed PPE.  The limit of 5.0 J/cm2 is that at which a person is likely to receive second degree burns.

Summary

To carry out arc flash calculations, first workout the arcing current, then the incident energy and finally the arc flash boundary.  Pretty straight forward.

To make life a little easier I have created a calculator to do the grunt work.  You can find it here:

Arc Flash Calculator

It anyone has an comments or spots any errors in the above, please chip in below.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



1,000 kV UHV First for China

At the beginning of the year China put the world's first 1,000 kV UHV transmission system into operation. Transmitting power at over a million volts is...

Photovoltaic (PV) - Electrical Calculations

Photovoltaic (PV) cells (sometimes called solar cells) convert solar energy into electrical energy.  Every year more and more PV systems are installed...

Electric Motors

Collection of links to various places with useful motor information. I’ll try and return to the page every now and again to update it with any motor notes...

What is a rectifier transformer?

I've recently come across this question a couple times browsing the internet. Decided to give a quick answer here. A rectifier transformer is a transformer...

The dc resistance of conductors

This is the first of two posts on the resistance of conductors. In the next post I will look at the ac resistance, including skin effect and we deal with...

Cable Sizing Tool

Our cable sizing tool is one of the more popular tools on the site.  The tool enables cables to be sized in compliance with BS 7671 (the IEE Wiring Regulations...

Contribute to myElectrcial

Have an opinion or something to say, want to ask or answer questions, share your knowledge then use our site to do it . As a community of people interested...

HTML Symbol Entities

HTML supports a variety of entity symbols which can be entered using either numbers or an entity name.  The number or name is preceded by the ‘&’ sign...

UPS Battery Sizing

Various techniques exist to enable the correct selection of batteries for UPS applications.  The procedure described below is one of the more common. ...

Material Properties

Everything physical in electrical engineering from insulations to conductors revolves around materials. Here we are listing common materials along with...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note