Cable Sizing Application

Click here to register to use our cable sizing application

What Changed

So that we can focus all our efforts on our new application, we have retired our myElectrical.com cable sizing calculator. We recommend you now use our main cable sizing application over at myCableEngineering.com.

myCableEngineering.com

Cable Sizing Software - select, size and manage your power cables using myCableEngineering. All your cables, for all your projects.
  • LV and MV cables up to 33 kV with current capacity in accordance with BS 7671, ERA 69-30 and IEC 60502.
  • Positive and zero sequence impedance to IEC 60609. Voltage drop in accordance with CENELEC CLC/TR 50480.
  • Project management and team collaboration, with clear easy to read calculations and reports.

Our software is the only cloud-based solution and has been built from the ground up to be fully responsive - meaning you can access your cables from anywhere and on any device, desktop, tablet or smartphone.

Duct Size Calculator


Tip: registered users can save calculations.

Typical Cable Diameters

Following outside diameters are for reference only and will vary depending on cable manufacturer. 

600/1000V XLPE Armoured

Overall Diameter (mm)
mm2 1core  2 core  3 core  4 core 
1.5    12.3  12.8  13.5
2.5    13.6  14.1  15.0
4    14.7  15.3  16.4
6    16.9  16.6  18.7
10    18.0  19.5  21.1
16     20.0  21.2  22.9
25    24.1  26.7  28.9
35    27.9  29.6  32.1
50*   17.5  25.8  28.5  32.0
70   20.2  29.0  32.2  37.7
95   22.3  33.1  37.0  41.7
120   24.2  36.1  40.0  47.7
150   27.4  39.3  45.5  51.4
185  30.0  44.7  49.8  56.6
 240  32.8  49.0  55.1  63.0
300  35.6  53.5  60.2  68.8
400  40.4  59.0  66.6  78.1
500  44.2      
630  48.8      
800  55.4      
1000  60.6      

 * - change in class of conductor

Calculation

1. Required fill factor k (in decimal)
2. Cable diameter d, giving a cable area, a:

a= π 4 d 2
3. Cable total area Ca = sum of area for all cables
4. Minimum duct diameter D:

D= 4 C a πk

Are We Losing Professional Integrity

I have been thinking recently that there appears to be less professional integrity around than when I first started my career in electrical engineering...

Introduction to Cathodic Protection

If two dissimilar metals are touching and an external conducting path exists, corrosion of one the metals can take place.  Moisture or other materials...

Railway Electrification Voltages

This post is quick introduction and overview to different railway electrification voltages used in answer to a question sent in via email. While there...

New Mail Chimp

We've been sending out Newsletters on a regular basis for a few weeks now. To do this we have been using Google's Feedburner service. While Feedburner...

ANSI (IEEE) Protective Device Numbering

The widely used United Sates standard ANSI/IEEE C37.2 'Electrical Power System Device Function Numbers, Acronyms, and Contact Designations' deals with...

Restricted Earth Fault Protection

The windings of many medium and small sized transformers are protected by restricted earth fault (REF) systems. The illustration shows the principal of...

Michael Faraday (the father of electrical engineering)

Famed English chemist and physicist Michael Faraday was born on September 22, 1791, in Newington Butts, a suburb of Surrey just south of the London Bridge...

8 Steps to Low Voltage Power Cable Selection and Sizing

A recurring theme on our forums is cable sizing. Now many installations are unique and require special consideration. However, a lot of the time things...

What is an Open Delta Transformer

In three phase systems, the use of transformers with three windings (or legs) per side is common.  These three windings are often connected in delta or...

Switchboard - Forms of Internal Separation

IEC 61439 'Low-voltage switchgear and controlgear assemblies', specifies standard arrangements of switchboard (call forms of internal separation). The...