Cable Sizing Application

Click here to register to use our cable sizing application

What Changed

So that we can focus all our efforts on our new application, we have retired our myElectrical.com cable sizing calculator. We recommend you now use our main cable sizing application over at myCableEngineering.com.

myCableEngineering.com

Cable Sizing Software - select, size and manage your power cables using myCableEngineering. All your cables, for all your projects.
  • LV and MV cables up to 33 kV with current capacity in accordance with BS 7671, ERA 69-30 and IEC 60502.
  • Positive and zero sequence impedance to IEC 60609. Voltage drop in accordance with CENELEC CLC/TR 50480.
  • Project management and team collaboration, with clear easy to read calculations and reports.

Our software is the only cloud-based solution and has been built from the ground up to be fully responsive - meaning you can access your cables from anywhere and on any device, desktop, tablet or smartphone.

Duct Size Calculator


Tip: registered users can save calculations.

Typical Cable Diameters

Following outside diameters are for reference only and will vary depending on cable manufacturer. 

600/1000V XLPE Armoured

Overall Diameter (mm)
mm2 1core  2 core  3 core  4 core 
1.5    12.3  12.8  13.5
2.5    13.6  14.1  15.0
4    14.7  15.3  16.4
6    16.9  16.6  18.7
10    18.0  19.5  21.1
16     20.0  21.2  22.9
25    24.1  26.7  28.9
35    27.9  29.6  32.1
50*   17.5  25.8  28.5  32.0
70   20.2  29.0  32.2  37.7
95   22.3  33.1  37.0  41.7
120   24.2  36.1  40.0  47.7
150   27.4  39.3  45.5  51.4
185  30.0  44.7  49.8  56.6
 240  32.8  49.0  55.1  63.0
300  35.6  53.5  60.2  68.8
400  40.4  59.0  66.6  78.1
500  44.2      
630  48.8      
800  55.4      
1000  60.6      

 * - change in class of conductor

Calculation

1. Required fill factor k (in decimal)
2. Cable diameter d, giving a cable area, a:

a= π 4 d 2
3. Cable total area Ca = sum of area for all cables
4. Minimum duct diameter D:

D= 4 C a πk

Famous Scientists

Here’s list of some famous scientists. Deliberately short, with the aim to provide a quick memory jog or overview. If your looking for more detailed information...

Alternating Current Circuits

Alternating current (a.c.) is the backbone of modern electrical power distribution. In this article I’ll be pulling some of the more important concepts...

Tech Topics/Application Notes - Siemens

There are a lot of interesting two page type notes on various medium voltage topics – switchgear, circuit breakers, bus systems etc. It is on the Siemens...

Capacitor Theory

Capacitors are widely used in electrical engineering for functions such as energy storage, power factor correction, voltage compensation and many others...

Electromagnetic Compatibility (EMC)

Electromagnetic compatibility (EMC) is the study of coordinating electromagnetic fields give off equipment, with the withstand (compatibility) of other...

IEC 61439 Verification Methods

The (relatively new) switchgear and control gear standard, IEC 61439 'Low-voltage switchgear and controlgear assemblies' has three methods which can be...

Voltage Drop in Installations - Concepts

Problems on achieving maximum voltage drop within an installation come up often. Depending where you live, local regulations will have different limits...

3 Phase Loads

Three phase systems are derived from three separate windings, either connected in delta or star (wye). Each winding can be treated separately, leading...

How Electrical Circuits Work

If you have no idea how electrical circuits work, or what people mean then they talk about volts and amps, hopefully I can shed a bit light.  I’m intending...

Fault Calculations - Introduction

Fault calculations are one of the most common types of calculation carried out during the design and analysis of electrical systems. These calculations...