Software Usage Guidelines 

By on

Using software in our  work is essential for most of us and we are becoming even more dependant on it's use.  While software is a great asset, many times using it can be more problematic than the problem it is trying to solve.  To maximise the benefit of using software I have been trying to think of five general guidelines.  This is my list: 

Know what you want to do

Sounds obvious, but quite often people get side tracked in using all the software functions or trying to use the incorrect software.  For example if you have an all singing all dancing software which can fully design all aspects of an electrical system, but you only need to size a single cable then the software may not be suitable. The software may require lots of time inputting masses of  data which  may or may not be available and is probably not relevant to the sizing of a cable.  In this instance you would need to limit your use of the software or maybe use different software or a even consider a hand calculation. 

Garbage in garbage out

An old saying, but very true.  The output and answers from software are dependant on the data given to it.  If you provide incorrect data or make mistakes inputting information then the output will be incorrect.   When inputting data it is essential to spend time ensuring that the input into each step is correct and accurate.

List assumptions

Rarely is all the information necessarily available at the time required.  Often assumptions or side calculations are made to obtain the necessary input data for software.   These assumptions (side calculations) should be documented.  During review/checking or modifying of the software at some future date, it will be necessary to know what are the assumptions and where then come from. 

Verify and check

Verify or reality check the, output of software.  Mistakes in input data and software bugs mean that errors can appear in the output.  In in the above cable example, you should have a rough idea of the likely size ranges, what length of cable will start giving voltage drop problems, etc.  If the software is producing answers in line with these expectations they you can be confident that things are going well.  Another useful exercise is to consistently check output at each stage of data input to ensure that errors are found early and corrected early.  It is easier to correct errors as they occur, rather than at the end of the software input exercise.

Software is a tool

This ties all the above together.  Software is a tool to use in the same way calculators, scale rulers, tracing paper, telephones, etc. are.  Tools are not the problem solving intelligence - the human using the tool is the brains behind the operation.  If the answers are wrong it's not realistic to put the blame  software.  If the wrong software has been selected, it is used incorrectly, the input data is bad and or no checks on the output have been carried out then it is probably the users problem, not the software.

To varying extents I try to follow the above guidelines.  When I do I am reasonably successful.  On the odd occasion where I haven't followed my own guidelines things have not run quite so smoothly. 

 



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



1,000 kV UHV First for China

At the beginning of the year China put the world's first 1,000 kV UHV transmission system into operation. Transmitting power at over a million volts is...

3 Phase Loads

Three phase systems are derived from three separate windings, either connected in delta or star (wye). Each winding can be treated separately, leading...

Motor Efficiency Classification

Electric motors are one of the most widely used items of electrical equipment. Improving motor efficiency benefits include, reduced power demand, lower...

Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

Questions - Reputation and Privilege

Our question and answer system while letting you do exactly what it says, is much more.  It is a dynamic user driven system, where our users not only ask...

IEC 61439 - The Switchgear Standard

The new standard IEC 61439 replaces the old 60439. Compared to the old standard, the new 61439 is a more clearly defined and takes into account the assembly...

How to Calculate Motor Starting Time

Request to look at induction motor starting time have come up a few times on the site. Hopefully in this post, I give you guys some idea on how to calculate...

Voltage Levels to IEC 60038

The standard aims to consolidate AC and traction voltages within the industry and defines the following bands: band 1 - A.C. systems 100 V to 1...

IEC 60287 Current Capacity of Cables - An Introduction

IEC 60287 "Calculation of the continuous current rating of cables (100% load factor)" is the International Standard which defines the procedures and equations...

IEC Document Designation

Often document control is dictated by project requirements, for example a particular organisation may have an existing numbering system. Existing company...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note