Cable Sizing Application

Click here to register to use our cable sizing application

What Changed

So that we can focus all our efforts on our new application, we have retired our myElectrical.com cable sizing calculator. We recommend you now use our main cable sizing application over at myCableEngineering.com.

myCableEngineering.com

Cable Sizing Software - select, size and manage your power cables using myCableEngineering. All your cables, for all your projects.
  • LV and MV cables up to 33 kV with current capacity in accordance with BS 7671, ERA 69-30 and IEC 60502.
  • Positive and zero sequence impedance to IEC 60609. Voltage drop in accordance with CENELEC CLC/TR 50480.
  • Project management and team collaboration, with clear easy to read calculations and reports.

Our software is the only cloud-based solution and has been built from the ground up to be fully responsive - meaning you can access your cables from anywhere and on any device, desktop, tablet or smartphone.

Arc Flash Calculator

Calculation of arc flash incident energy and protection boundary in accordance with IEE Std. 1584 'IEEE Guide for Performing Arc-Flash Hazard Calculations'.

Sytem Details

Equipment Details

Arc Flash


Tip: registered users can save calculations.

Symbols

V - system voltage (kV)
Ibf - bolted three phase fault current (kA)
Ia - arcing current (kA)
E - incident energy (J/cm2)
EB - - incident energy at boundary distance (J/cm2)
En - - normalized incident energy (J/cm2)
t - arcing time (s)
D - distance from arc to person (mm)
CB - distance of boundary from arc point (mm)

Notes

  1. Boundary Energy can be set at 5.0 J/cm2 for bare skin or at the rating of any proposed PPE.
  2. The limit of 5.0 J/cm2 is that at which a person is likely to receive second degree burns.
  3. To convert J/cm2 to cal/cm2 multiply by 0.239

Gap and distance factors
Voltage (kV) Equipment Type Typical gap between
conductors (mm)
Distance factor,
x
0.208 - 1



Open Air 10-40 2.000
Switchgear 32 1.473
MCC and Panels 25 1.641
Cable 13 2.000
>1 - 5 Open Air 102 2.000
Switchgear 13-102 0.973
Cables 13 2.000
>5 -15 Open Air 13-153 2.000
Switchgear 153 0.973
Cables 13 2.000

For a more detailed explanation of the calculation, please see: Arc Flash Calculations Post


What is Aircraft Ground Power

Ever wondered what kind of power an aircraft uses when parked at the airport stand. Normally the aircraft generates it own power, but when parked with...

EU Code of Conduct on Data Centres - Best Practices

The European Union is implementing a voluntary code of practice for participants with the aim of improving the overall efficiency of data centres. As part...

Fault Calculations - Introduction

Fault calculations are one of the most common types of calculation carried out during the design and analysis of electrical systems. These calculations...

IEC 60287 Current Capacity of Cables - Rated Current

In the previous note we looked at the approach taken by the standard to the sizing of cables and illustrated this with an example.  We then looked at one...

Equipment Verification (to IEC Standards)

One of the requirements to ensuring that everything works is to have equipment selected, manufactured and verified [tested] to IEC standards. Not all equipment...

Power Factor

Power factor is the ratio between the real power (P in kW) and apparent power (S in kVA) drawn by an electrical load. The reactive power (Q in kVAr)...

Switchboard - Forms of Internal Separation

IEC 61439 'Low-voltage switchgear and controlgear assemblies', specifies standard arrangements of switchboard (call forms of internal separation). The...

Capacitor Theory

Capacitors are widely used in electrical engineering for functions such as energy storage, power factor correction, voltage compensation and many others...

Maxwell's Equations - Introduction

Maxwell's Equations are a set of fundamental relationships, which govern how electric and magnetic fields interact. The equations explain how these fields...

DC Component of Asymmetrical Faults

The image (reproduced from IEC 60909) shows a typical fault in an ac system.  From the illustration it can seen that there is an initial dc component ...