Generation of a Sine Wave 

By on

A fundamental concept behind the operation of alternating current systems is that voltage and current waveforms will be sinusoidal – a Sine Wave. This is best explained by considering how a coil of wire behaves when rotated in a magnetic field.  

Faraday's Induction Law states that any change in the magnetic environment of a wire will cause a voltage to be "induced" in the wire. This can be expressed mathematically as:

myElectrical Equation

where:

V - induced voltage, V (volts)

B - magnetic flux density, T (tesla)

l - length of conductor, m (metre)

v - velocity between conductor and magnetic field m.s-1 (metre per second)

θ - angle between conductor and magnetic field, radians (or degrees)

If the wire is moved parallel to the magnetic field, the resulting angle is zero and the induced voltage with be zero. If the wire is moved perpendicular to the magnetic field (sin θ = 1) then the maximum voltage will be induced (for a given field and velocity). At any other angle the voltage will be proportional to the sine of the angle.

Generation of Voltage

Sine Wave GenerationIn practice voltage is generated by rotating a coil of wire through a magnetic field in a generator. The illustration shows this process. Initially the coil is perpendicular to the magnetic field generating maximum voltage. As the coil rotates the voltage decreases according to the sine of the angle until the conductor is parallel to the magnetic field. Further rotation then increases the voltage until once again it is at a maximum (but in the opposite direction).

For each revolution a complete sine wave is generated. The number of sine wave cycles generated per second (the frequency) depends on how quickly the generator is rotating.

In practice each generator coil will have several turns of wire. For 'n' turns, the total voltage will be 'n' times that given by the above equation. Real generator winding are often more complex than that of a single coil, however the basic goal of constructing machines to generate a sine wave still apply.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus

  1. drdimitri's avatar drdimitri says:
    11/19/2012 10:00 PM

    Actually, in practice the wires will be embedded in a ferromagnetic rotor, thus the voltage produced will be a square-wave and not sinusoidal. Also, in practice the rotor will be the magnet and the stator will have the windings (synchronous machine).

    • Steven's avatar Steven says:
      11/20/2012 12:26 PM

      Thanks for the comments drdimitri. They bring out a valid point.

      The theory described above is correct and useful in explaining how a sinusoidal emf is generated, which was the intent of the page. As an additional reference, readers can refer to Hughes, Electrical Technology Seven Edition, page 192, which describes much the same analysis.

      You are correct that practical machines are more complicated than the simple coil type shown and that the magnetic flux does not behave the same. The high reluctance of the air gap (compared to the rotor and stator) forces the magnetic flux to be perpendicular between the rotor and stator. To obtain a sine wave the turns are distributed in closely spaced slots around the rotor and varied in a sinusoidal manor.

    • drdimitri's avatar drdimitri says:
      11/20/2012 12:45 PM

      Exactly! This is one of the questions I always ask my students and at first they always forget that the air gap introduces a very high reluctance, so they think that "by default" a generator will produce a pure sine wave. It actually takes a lot of effort to produce a sine wave, as you have pointed out (distributed windings)...


Comments are closed for this post:
  • have a question or need help, please use our Questions Section
  • spotted an error or have additional info that you think should be in this post, feel free to Contact Us



IEC 61439 - The Switchgear Standard

The new standard IEC 61439 replaces the old 60439. Compared to the old standard, the new 61439 is a more clearly defined and takes into account the assembly...

Maximum Demand for Buildings

Estimating maximum demand is a topic frequently discussed. Working out how much power to allow for a building can be very subjective . Allowing too much...

Maxwell's Equations - Gauss's Electric Field Law

Gauss's Electrical law defines the relation between charge ("Positive" & "Negative") and electric field.  The law was initially formulated by Carl Friedrich...

Sony Pocket eBook Reader

For the past few years I have reading eBooks on my HTC touch phone. On and off I have debated buying an eReader and recently purchased a Sony PRS-300 ...

MIT OpenCourseWare

MIT OpenCourseWare, makes the materials used in teaching all MIT subjects available on the Web, free of charge, to any user in the world.

IEEE Winds of Change

IEEE TV has a part series of videos on wind power and it's implication. For a really good overview to the technologies and issues around wind power, these...

Understanding Circuit Breaker Markings

IEC 60947 is the circuit breaker standard and covers the marking of breakers in detail. Any manufacturer following this standard should comply with the...

Arc Flash Calculations

Working in the vicinity of electrical equipment poses an hazard. In addition to electric shock hazard, fault currents passing through air causes Arc Flash...

New Mail Chimp

We've been sending out Newsletters on a regular basis for a few weeks now. To do this we have been using Google's Feedburner service. While Feedburner...

Large Hadron Collider

The 27 km, Euro 6 billion  Collider lies on the border between France and Switzerland, took nearly 30 years to complete.  Some of the lofty goals for the...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note