Multimeter 

By on

Image(6)
Fluke 175 Digital Multimeter
Multimeters are undoubtedly the most common item of electrical test equipment in use.  Often it is the first piece of equipment people will turn to when trying to visualize and obtain data on an electrical system.

As the name suggests, a multimeter is an single meter with the ability to measure several electrical quantities. Nearly all multimeters will include the measurement of at voltage, current and resistance.  Depending on the type and sophistication of the meter, other measurable quantities would include frequency, capacitance and even temperature.  In addition to measurement, some meters include functions such as data logging, diode and continuity testing, instrument loop testing and wireless remote displays.

Commercially, there is a massive range of multimeters available to suit various technical requirements and cost budgets.  Meters vary not in only what the can measure, but in how accurately they make the measurements and the range over which the measurements can be made.   Meters offer different levels of operational safety, varying levels of usability and construction quality.  Making a good selection, is a trade of between all these various elements.

Analogue and Digital Meters

Multimeters come in two types - analogue in which a moving needle displays the measured quantities on a printed scale and digital, where the measured quantity is read on an LCD display.

In industry, digital meters tend to dominate due to there ease of use.  Some users prefer analogue, particularly if quantities are varying as it can be more easy to get a feel for ranges.  On analogue meters, measurements can be peripherally viewed  by noting the approximate location of the needle on the scale.  

Parallax Error: in an analogue meter, the needle is above the scale and if the reading is not taken by looking directly on to the needle a visual error can occur.  Better quality meters will include a mirror on the scale, which if the user aligns the needle with its image  will avoid any parallax error.

Average or True RMS

Image(7)
Sanwa SH-88TR Analogue
Multimeter
In a perfect sine wave, the average and RMS (root mean square) values of current are related to the peak by constant factors (2/pi =0.636  and 1/√2 = 0.707 respectively).  Many meters will measure the average value of an a.c. waveform and calculate the peak and RMS values by applying these scaling factors.

In real life situations, an a.c. waveform is often very different from that of a perfect sine wave.  Using an averaging meter in this instance would lead to errors.  True RMS meters will take into account the non-pure sinusoidal nature of the waveform being measured and return accurate RMS values of any measured quantity.  True RMS meters tend to be more expensive, although in many applications this extra cost is justified.

Tip:  many electrical systems involve the use of variable frequency drives.  In these devices, a synthetic sine wave is generated by adjusting the width of high frequency pules.  Many multimeters are designed, rated and calibrated for frequencies around 50 or 60 Hz.  Within a variable frequency drive, while the output frequency is stated as being around these levels, the reality of it's high frequency generation, may give unreliable readings on multimeters not designed for this. Multimeters intended for use with variable frequency drives should have an appropriate frequency resolution.

Calibration

The accuracy of any measuring device will drift over time.  This is the same for multimeters.  The object of calibration is to adjust the meter to ensure it is performing within its designed accuracy limits.  Calibration is normally performed in a laboratory, where the meter readings are compared to a known reference.

In industry and commercial use, multimeters are subject to being calibrated at periodic intervals (typically yearly).  In these applications before trusting any measurements, it is important to verify the accuracy of the meter by reviewing the calibration certificate and ensuring it is still in date.

 

 

Buying a multimeter

When buying a multimeter it is well worth considering the purchase of a good quality meter over that of a cheaply constructed one. A good quality meter will not only provide better accuracy, last longer and be more rugged, it will most importantly likely provide greater safety in operation.

In additional to considering measurement functions when purchasing a meter , you should also ensure that it has the correct safety rating for the applications it will be used on:

  • CAT I - protected electronic circuits
  • CAT II - receptacle circuits and plug loads
  • CAT III - three phase circuits and permanently installed loads
  • CAT IV - utility connections

Two of the top market brands are Fluke and Extech. If your looking to purchase you can browse these meters at:

myElectrical Store - Fluke Multimeters

myElectrical Store - Extech Multimeters



More interesting Notes:
Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Wiki Depreciation

We have had the Wiki with us for a long time now, but at last I have decided to say bye bye – more details on why below.

IEC 60287 Current Capacity of Cables - An Introduction

IEC 60287 "Calculation of the continuous current rating of cables (100% load factor)" is the International Standard which defines the procedures and equations...

IEC 61439 - The Switchgear Standard

The new standard IEC 61439 replaces the old 60439. Compared to the old standard, the new 61439 is a more clearly defined and takes into account the assembly...

Random Numbers

Using laser optical pulses the random number generator utilizes the time between arrival of random photos to generate the numbers, ensuring true accuracy...

Post Editing Tips

If you at all familiar with programs like office and outlook, then adding and editing posts is pretty straightforward and intuitive.  However, there are...

Difference Between Live and Dead Tank Circuit Breakers

A quick post in connection with an email question: Live Tank - the circuit breaker the switching unit is located in an insulator bushing which is live...

IEC Reference Designations

The IEC publishes a series of documents and rules governing the preparation of documents, drawings and the referencing of equipment.   Depending on country...

Maximum Demand for Buildings

Estimating maximum demand is a topic frequently discussed. Working out how much power to allow for a building can be very subjective . Allowing too much...

Introduction to Lighting

When looking at the design of a lighting scheme it is useful to have an understanding on the nature of light itself and some of the basic theory associated...

Back to Basics - Ohm’s Law

Electrical engineering has a multitude of laws and theorems. It is fair to say the Ohm's Law is one of the more widely known; it not the most known. Developed...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note