Smarter Electrical Distribution 

By on

The other day I came across an article in Technology Review on the development of a smart transformer. A professor at North Carolina State University is developing a transistor based transformer capable of coping with both dc and ac and of directing power to where it is required. His idea is to shuffle power around the grid in the same way that the internet intelligently moves data around.

The interesting thing from this is that people are starting to address the way we move power around. There is a lot of talk about renewable energy such as solar and wind, but less talk in utilizing this on a large scale. One of the problems with renewable generation is that it is not continuous; you need the sun to be out for solar power to work. Contrast this with our consumption habits of wanting power available on demand twenty four hours a day. As reliance on renewable energy continues to increase this mismatch between generation and demand is going to get worse.

While the smart transformer may or may not be a component in future smarter distribution systems it is obvious that how we utilize power will need to change.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Generator Sizing & Operation Limits

When selecting a generator, there are inherent limits on the active and reactive power which can be delivered. Generators are normally sized for a certain...

Capacitor Theory

Capacitors are widely used in electrical engineering for functions such as energy storage, power factor correction, voltage compensation and many others...

International System of Units (SI System)

The International System of Units (abbreviated SI) is the world's most widely used system of units.  The system consists of a set of units and prefixes...

Difference Between Live and Dead Tank Circuit Breakers

A quick post in connection with an email question: Live Tank - the circuit breaker the switching unit is located in an insulator bushing which is live...

The ac resistance of conductors

In a previous article I looked at the dc resistance of conductors and in this article we turn our attention to ac resistance. If you have not read the...

IEC 60287 Current Capacity of Cables - An Introduction

IEC 60287 "Calculation of the continuous current rating of cables (100% load factor)" is the International Standard which defines the procedures and equations...

IEC 60287 Current Capacity of Cables - Rated Current

In the previous note we looked at the approach taken by the standard to the sizing of cables and illustrated this with an example.  We then looked at one...

Earth Electrode Resistance

Earthing of electrical systems is essential for the correct functioning and the protecting of life and equipment in the event of faults.  The earth electrode...

Introduction to Lighting

When looking at the design of a lighting scheme it is useful to have an understanding on the nature of light itself and some of the basic theory associated...

Maxwell's Equations - Gauss's Electric Field Law

Gauss's Electrical law defines the relation between charge ("Positive" & "Negative") and electric field.  The law was initially formulated by Carl Friedrich...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note