Smarter Electrical Distribution 

By on

The other day I came across an article in Technology Review on the development of a smart transformer. A professor at North Carolina State University is developing a transistor based transformer capable of coping with both dc and ac and of directing power to where it is required. His idea is to shuffle power around the grid in the same way that the internet intelligently moves data around.

The interesting thing from this is that people are starting to address the way we move power around. There is a lot of talk about renewable energy such as solar and wind, but less talk in utilizing this on a large scale. One of the problems with renewable generation is that it is not continuous; you need the sun to be out for solar power to work. Contrast this with our consumption habits of wanting power available on demand twenty four hours a day. As reliance on renewable energy continues to increase this mismatch between generation and demand is going to get worse.

While the smart transformer may or may not be a component in future smarter distribution systems it is obvious that how we utilize power will need to change.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Cable Sizing Software

When sizing cables nearly, everyone uses some form of software. This ranges from homespun spreadsheets to complex network analyses software. Each has its...

Understanding Motor Duty Rating

One of the comments on my Motor Starting Series was asking for something on duty cycles. Here it is. As a purchaser of a motor, you have responsibility...

Motor Efficiency Classification

Electric motors are one of the most widely used items of electrical equipment. Improving motor efficiency benefits include, reduced power demand, lower...

IEC 60287 Current Capacity of Cables - An Introduction

IEC 60287 "Calculation of the continuous current rating of cables (100% load factor)" is the International Standard which defines the procedures and equations...

Are We Losing Professional Integrity

I have been thinking recently that there appears to be less professional integrity around than when I first started my career in electrical engineering...

Getting Started with Patents

If you have a great idea or invent something the last thing you want is someone to steal the idea. One of the things you can do is protect the intellectual...

DC Component of Asymmetrical Faults

The image (reproduced from IEC 60909) shows a typical fault in an ac system.  From the illustration it can seen that there is an initial dc component ...

LED Replacement Light Bulb

The inventor of the first visible light-emitting diode makes history again this year as it begins to show customers a 40-watt replacement GE Energy Smart...

Windows Live Writer and myElectrical

When making adding a Note to our site we have a great online WYSIWYG editor and things are pretty simple.  However, if you prefer you can write, manage...

IEC 60287 Current Capacity of Cables - Rated Current

In the previous note we looked at the approach taken by the standard to the sizing of cables and illustrated this with an example.  We then looked at one...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note