Railway Electrification Voltages 

By on

This post is quick introduction and overview to different railway electrification voltages used in answer to a question sent in via email.

While there are numerous voltages in use through out the world (many dating back a hundred years), fortunately the number of voltages levels in common/widespread use is relatively few. To keep the post short, I will only list the more common voltages.

Both dc and ac systems are used. Direct current systems are generally used for metro lines and relatively commuter /regional systems up to around 100 km long. For longer and more heavily loaded routes, alternating current is generally used.

Direct Current (dc) Voltages

Most commonly used are 600/650 and 750 V. These are used world wide on mass transit, commuter and tram lines. Voltage is supplied to the train using a third rail or overhead lines.

1.5 kV (typically supplied overhead) is used in Europe, the US, China, Australia and a several other countries. Less common are 3 kV systems, but these can still be found in operation in several countries.

Alternating Current (ac) Voltages

25 kV (50 Hz or 60 Hz) ac systems have achieved widespread use in many countries, including the UK, US, large parts of Europe, Asia, Africa and the Americas. Additionally 15 kV (16 2/3 Hz) networks still have widespread use within Europe and the US still has several 12 kV (25 Hz) lines.

The US, South Africa and Canada also operate 50 kV systems in operation (typically used on systems for mine haulage).

It would be fair to say that 25 kV has become the international standard. This is covered by two standards:

  • BS EN 50163 - Railway applications. Supply voltages of traction systems
  • IEC 60850 - Railway Applications. Supply voltages of traction systems

Alternating current systems invariably are supplied by overhead lines. It is worth noting that most implementations are single phase (due to problems with picking up three phases from the overhead lines).  

That's it; a quick summary. It doesn't cover every voltage, but hopefully will give everyone a general understanding of the most common voltages used.

If anyone has anything to add or want to give a few more details, please do so below.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Batteries

A battery consists of one or more cells, each of which use stored chemical energy to produce electrical energy, There are many types of cells and these...

Battery Sizing

This article gives an introduction to IEEE 485 method for the selection and calculation of battery capacity.

Periodic Electrical Installation Inspection – What to Inspect?

This is the second post in a series of two on periodic electrical inspections. In the first post, I discussed how often inspections should be carried out...

Tips for a better Low Voltage Protection Discrimination Study

Carrying out a protection system discrimination study is critical to ensure the correct functioning of  the electrical system in the event of faults. ...

HTML Symbol Entities

HTML supports a variety of entity symbols which can be entered using either numbers or an entity name.  The number or name is preceded by the ‘&’ sign...

Cable Sizing Software

When sizing cables nearly, everyone uses some form of software. This ranges from homespun spreadsheets to complex network analyses software. Each has its...

Generator Sizing & Operation Limits

When selecting a generator, there are inherent limits on the active and reactive power which can be delivered. Generators are normally sized for a certain...

Dielectric loss in cables

Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes...

What is a rectifier transformer?

I've recently come across this question a couple times browsing the internet. Decided to give a quick answer here. A rectifier transformer is a transformer...

Fault Calculation - Symmetrical Components

For unbalance conditions the calculation of fault currents is more complex. One method of dealing with this is symmetrical components. Using symmetrical...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note