Batteries 

By on

VoltaicPileBatteryA battery consists of  one or more cells, each of which use stored chemical energy to produce electrical energy, There are many types of cells and these are combined in a multitude of ways to produce the many battery types in use.

Batteries are divided in to primary and secondary:

  • Primary batteries – have an irreversible chemical action and can only be used once
  • Secondary batteries – have a reversible chemical action and can be recharged

The modern battery came into being due mainly to work carried out by Alessandro Volta at the end of the 18th century. He was able to make a cell by using silver and zinc discs sandwiched between  cardboard soaked in salt water.  By combining many cells in series he created what has become known as the Voltaic Pile.

Theory

When two dissimilar metals [electrodes] are placed in an electrolyte, ions will flow from the more reactive electrode to the other, building up charge.  This build up of charge is neutralised by the flow of electrons [current] in the circuit.

Splug.com (physics) have a good article which looks at the chemistry of how a cell works in more detail.  A link to the page is included below.

Approximate EMFs of Cells

Cell V
Bichromate 2
Bunsen 1.9
Dry cell 1.5
Daniell 1.08
Grove 1.8
Lead-Acid 1.85 - 2.2
Leclanché 1.46
Lithium Copper Oxide 1.7
Lithium Iron Disulfide 1.5
Lithium Manganese Dioxide 3.0
Lithium Ion 3.6
Mercury Oxide 1.35
Nickel Cadmium 1.3
Nickel Iron 1.4
Nickel Metal Hydride 1.2
Nickel Oxyhydroxide 1.7
Nickel Zinc 1.6
Silver Oxide 1.55
Zinc Air 1.35 – 1.65
Zinc Carbon 1.5
Zinc Chloride 1.5
Zinc Silver Oxide 1.8

Capacity (Ampere-hour)

Capacity measures the amount of energy stored in a battery.  In a battery, capacity is measured in ampere-hours (Ah).  This is the amount of amperes which can be drawn from the battery for one hour.  If a lower current is drawn the battery will last longer than an hour (conversely if more current is drawn it will last less).

In practice, varying terminal voltages, temperature and other factors make the assessment of capacity complex.

Internal resistance

Batteries are not perfect devices.  To understand their operation they can be modelled as a perfect voltage source (one with zero internal resistance) in series with an internal resistance. The voltage Vt at the terminals of a battery is given by:

myElectrical Equation

  • Voc is the open-circuit voltage of the battery
  • Ri is the battery's internal resistance
  • I is the current flowing through the battery

This can be rearranged to calculate the internal resistance given the other quantities:

myElectrical Equation

As the battery runs down and its internal resistance increases.  Consequently the voltage drop across the internal resistance increases and the terminal voltage decreases.

Battery Types

Alkaline Battery - invented by Canadian engineer Lewis Urry in the 1950s, alkaline batteries are a type of primary battery or rechargeable battery which utilizes alkaline as the electrolyte . Alkaline batteries have a higher output than many other battery types and account for the largest share to the battery market worldwide.

Common Consumer Battery Sizes

There are a vast number of battery types in use.  The table below lists the most common, which are used in everyday appliances.  For a more complete list, Wikipedia has a good page – see the external links section below.

Diagram  Size Capacity
(mAh)
ANSI
NEDA
IEC Diam.
(mm)
Height
(mm)
Mass
(g) 
  AAAA 625 1.5 25A LR8D425 8.3 42.5 6.5
battery1 N 1000 1.5 910A LR1 12 30.2 9
battery2 AAA 1250 1.5 24A LR03 10.5 44.5 11.5
battery3 AA 2850 1.5 15A LR6 14.5 50.5 23
  J 625 6 1412A 4LR61 prismatic 48.5 30
  9V 625 9 1604A 6LR61 prismatic 48.5 45.6
battery4 C 8350 1.5 14A LR14 26.2 50 66.2
battery5 D 20500 1.5 13A LR20 34.2 61.5 148

Notes: capacities are typical only.

Battery Life

Primary Batteries – naturally lose 8% to 20% per year at a temperature of about 20°-30°C due to self discharge.  Lowering the battery temperature (keeping in the fridge for example, can aid in reducing the self discharge.

Secondary Batteries – generally self-discharge quicker than primary batteries.  As batteries are recharged, they lose capacity – typical recharge cycles are in the range of 500 to 1000 charges.

Battery life can be seriously affected by temperature.  The link [effect of temperature on lead batteries], at the end of the article, explains this phenomena in detail.  

External Links



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



How to Size Power Cable Duct

Some colleagues had an issue earlier in the week on sizing conduits to be cast in concrete for some power cables . It became clear that none of us had...

UPS Sizing - Rules of Thumb

It wasn't so long ago I was telling someone that I don't use rules of thumb as most things are easily calculated anyhow.   As it turns out I last week...

Battery Cars A to Z

Battery powered cars are a hot topic and widely debated. The pros, cons, issues and time frames can be talked about endlessly. An article by the Telegraph...

Battery Sizing

This article gives an introduction to IEEE 485 method for the selection and calculation of battery capacity.

Motor Efficiency Classification

Electric motors are one of the most widely used items of electrical equipment. Improving motor efficiency benefits include, reduced power demand, lower...

Differential protection, the good old days

This morning I was explaining how differential protection works to a junior engineer. To give him something to read I opened up the NPAG (Network Protection...

Lead us, Warleader

Delum, who had watched all in silence, his face empty of expression, now spoke in turn. ' "Lead us, Warleader, into glory."' Reading is something I do...

Meeting room of the future

The IET site has a video of a visit showing of a high tech meeting room developed at Napier University in Edinburgh. It a good demonstration of innovative...

DC Component of Asymmetrical Faults

The image (reproduced from IEC 60909) shows a typical fault in an ac system.  From the illustration it can seen that there is an initial dc component ...

How to Check a Circuit is Dead

If you want to check a circuit is dead (not live), you should always use the three point method. First check a known live circuit, then check the dead...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note