Load Flow Study – how they work 

By on

A load flow study is the analysis of an electrical network carried out by an electrical engineer.  The purpose is to understand how power flows around the electrical network.  Carrying out a load flow study assists the engineer in designing electrical systems which work correctly, have sufficient power supplied by the power grid, where equipment is correctly sized, reactive power compensation is correctly placed and transformer taps are optimised.

A load flow study is the analysis of an electrical network carried out by an electrical engineer.  The purpose is to understand how power flows around the electrical network.  Carrying out a load flow study assists the engineer in designing electrical systems which work correctly, have sufficient power supplied by the power grid, where equipment is correctly sized, reactive power compensation is correctly placed and transformer taps are optimised.

Understanding how power flows is crucial to the design of any system.  For simple radial systems, often no formal ‘load flow study’ is carried out, but invariably it is part of any analysis carried out during the design of the system.   For larger power distribution systems, a formal ‘load flow study’ is carried out; typically using software, with the results presented in a report.

Primarily the load flow study investigates power flow (both real and reactive).  If you need a better understanding of real and reactive power is, you can review our Alternating Current Circuits Note.  In addition to power flow, a load flow study is often used to investigate other parameters such as current flow, system power factors, losses, and equipment loading. 

loadflow
Load Flow Study (NEPL, http://www.neplan.ch)

The image (click for a larger version), shows a typical load flow study.   This diagram illustrates part of the network and shows the calculated the flow of real power (P) and reactive power (Q), with the arrows indicating the direction of flow.  In addition, busbar voltages are shown.

Theory

In carrying out a load flow study, it is necessary to mathematically describe the electrical network and carry out calculations to obtain the desired results.  Most real life studies are solved using software, so we will only briefly touch on the mathematics (numerous text books deal with load flow if the reader is interested in more depth).

The basic representation of an electrical network is given by:

  [ Y 11 Y 1n Y n1 Y nn ][ V 1 V n ]=[ I 1 I n ]

The admittance matrix (Y11 … Ynn) represents the admittance of between each network node (typically each busbar) of the electrical system.  At each node, the voltages (V1 … Vn) and currents (I1 … In) are represented by it’s appropriate matrix  It should be noted that the admittances, voltages and current are complex.

Given the network matrix above, expressed as:

[ Y ][ V ]=[ I ]

and at each node, the complex power S =  (P+jQ) is given by:

S=V I *

At the start of the load flow study, many of the voltages and currents are unknown.  An iterative approach is required to find the value of these voltages and currents.  Several methods exist (Gauss-Seidel, Newton-Raphson, and others).  It is the iterative nature of solving the equations that make hand calculation difficult except for all but the smallest systems.  

Practice

Most real-life load flow studies are carried out using software.   In doing this, the electrical engineer builds a network of nodes  interconnected by admittances (impedances).

Each system node has four key parameters:

  1. the active power (P)
  2. the reactive power (Q )
  3. the voltage magnitude (V)
  4. the voltage phase angle (δ)

In defining nodes in a software model, the engineer typically considers three types:

  1. Load Bus [P-Q bus] – a bus where the real and reactive power are specified.  The voltage (magnitude and phase angle) is calculated by the study.
  2. Generator Bus [P-V bus] – a bus a which the voltage and real power generation is known.  The reactive power and phase angle of the voltage are calculated by the study.
  3. Slack Bus (Swing bus) – where the voltage magnitude and phase are assumed known.  The active and reactive power are calculated by the study.

In a study most, nodes are of the load bus type.  Any nodes with a generator connected are of the generator bus type.  While more than one slack bus could be defined, it is usual to have only one, and this is chosen as the connection point to the main grid supply.

The engineer will build the network model by placing grid connections, generators, busbars, interconnections (cables, overhead lines, etc.) and major items of equipment (transformers, motors, loads, capacitors, etc.).  The software will then carry out the necessary calculations.

Using software simplifies the carrying out of a load flow study.  However, the selection of input data required, level of detail to model, verification and interpretation of the output and utilising this to achieve the required design still requires the input of a skilled electrical engineer.  A knowledge of the underlying mechanics of what the software is doing will enable the engineer to employ software modelling in his everyday work to achieve the required system design. 



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



myElectrical - Cable Sizing Tool Upgrade

Our IEE cable sizing was wrote a few years ago and had become rough around the edges. I thought it was time to give the tool a service. Unfortunately when...

110 or 230 Volts

I've been considering a blog on the 110 or 230 Volt issue for a while.  While browsing the Internet I came across a great summary by Borat over at  engineering...

RLC Circuit, Resistor Power Loss - some Modelica experiments

Modelica is an open source (free) software language for modelling complex systems. Having never used it before, I thought I would download a development...

Batteries

A battery consists of one or more cells, each of which use stored chemical energy to produce electrical energy, There are many types of cells and these...

MIT OpenCourseWare

MIT OpenCourseWare, makes the materials used in teaching all MIT subjects available on the Web, free of charge, to any user in the world.

Introduction to Cathodic Protection

If two dissimilar metals are touching and an external conducting path exists, corrosion of one the metals can take place.  Moisture or other materials...

Understanding electric motor insulation & temperature

Anyone specifying or using electric motors should have a basic understanding how the insulation is related to temperature. Three classes of insulation...

Multimeter

Multimeters are undoubtedly the most common item of electrical test equipment in use.  Often it is the first piece of equipment people will turn to when...

Cable Sheath and Armour Loss

When sizing cables, the heat generated  by losses within any sheath or armour need to be evaluated. When significant, it becomes a factor to be considered...

Voltage Drop in Installations - Concepts

Problems on achieving maximum voltage drop within an installation come up often. Depending where you live, local regulations will have different limits...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note