Introduction to Traction Substations 

By on

Following on from my post on railway electrification voltages, I thought an introduction to traction substations would be a good idea.

Traction substations are used to convert electrical power as supplied by the power utility (or rail operators own network) to a form suitable for providing power to a rail system (via third rail or overhead line). Depending on the type of rail system this power would be either direct current (dc) or alternating current (ac).

For dc systems, the traction substation core equipment will be the transformers and rectifiers to used to convert the utility supply to dc. Rectifiers are either 6, 12 or 24 pulse. In addition the dc traction substation will contain circuit breakers to ensure the system is adequately protected and switching devices allowing operation and maintenance of the system.

For ac systems, the traction substation core equipment will be transformers which connect to the three phase power utility supply to convert this to a single phase voltage suitable for the rail electrification system being used. Again circuit breakers and switching devices will be provided to ensure adequate system protection and operation and allow for maintenance.

Alternating current supply on the traction side is single phase and can lead to imbalance on the three phase utility beyond allowable limits. Balancing devices (Scott transformers, static convertors, etc.) are often used to achieve these limits.

Generally traction substations will be controlled by SCADA systems and will likely provide power for auxiliary systems such as signaling and other track side purposes.

Traction substations have harsher operational and stability constraints than normal power distribution substations. These include being subject to frequent short circuits, transient spikes, voltage depressions and voltage rises. The use of thyristor controlled traction drives generate significant harmonics, affecting the supply system.

Given the unique issues associated with rail power, the design, construction and operation of traction substations has many technical challenges. Add into this, loading from many trains running at the same time and modern design is heavily dependent on software support.

Please feel free to add comments below or suggest any items which you thing would be a good topic for a more detailed post.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus

  1. Sanjay's avatar Sanjay says:
    1/2/2013 6:08 AM

    Would like to kbnow about the traction substation equipment ararngements,layout,spacing and building foot print of the traction substation.What standards are followed for the traction substations?Is there any specific requirements laid by IEC in this regard?


Comments are closed for this post:
  • have a question or need help, please use our Questions Section
  • spotted an error or have additional info that you think should be in this post, feel free to Contact Us



Always Use PPE

A lot of our members work in countries where PPE (personal protective equipment) is regulated or they work for companies/organizations which take employee...

Magicians of Engineering

The other day I was reading 'Night of the New Magicians' by Mary Pope Osborn with my son.  The story is about a young boy and girl who travel back in time...

DC Motor Operation

Coils of wire on the rotor carry a d.c. current which generates a magnetic field. A stator magnetic field is created using either permanent magnets or...

Electromagnetic Compatibility (EMC)

Electromagnetic compatibility (EMC) is the study of coordinating electromagnetic fields give off equipment, with the withstand (compatibility) of other...

Wiki Depreciation

We have had the Wiki with us for a long time now, but at last I have decided to say bye bye – more details on why below.

Differential protection, the good old days

This morning I was explaining how differential protection works to a junior engineer. To give him something to read I opened up the NPAG (Network Protection...

A mechanical engineering paper, some history and memories

I was digging in my bookshelf and came across the 80th Anniversary Association of Mine Resident Engineers, Papers and Discussions Commemorative Edition...

Alternating Current Circuits

Alternating current (a.c.) is the backbone of modern electrical power distribution. In this article I’ll be pulling some of the more important concepts...

What does N+1 mean?

The term 'N+1' relates to redundancy and simply means that if you required 'N' items of equipment for something to work, you would have one additional...

1,000 kV UHV First for China

At the beginning of the year China put the world's first 1,000 kV UHV transmission system into operation. Transmitting power at over a million volts is...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note