Differential protection, the good old days 

By on


Image reproduced from
'Network Protection and Automation Guide, by Areva
This morning I was explaining how differential protection works to a junior engineer.  To give him something to read I opened up the NPAG (Network Protection and Automation Guide, by Areva) and turned to Chapter 10  ‘Unit Protection of Feeders’.  I was immediately confronted with Marz and Price, circulating current systems, balanced voltage systems, high impedance series connected relays, illustrations like the one shown, etc. ... and remembered my early years.  A time when if you mentioned differential protection to an electrical engineer, they would turn and run in the opposite direction.

Now, I’m not sure if this applies to everyone, but the systems I have been involved with for the past few years have employed numerical relays for differential protection.  Install the two relays, connect together with an optical fibre and gone are all the problems of trying to do this using wires/current between the relays.   I think this is a pretty clear example of how changes in technology have vastly simplified something.  Not only has it simplified the application of differential protection, it also comes with a host of advancements – being able to use CTs manufactured to different specifications as an example.

Numerical relays and optical links may not be the answer to every situation, but I think they make life easier for most of us. 



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Frame Leakage Protection

While not as popular as it once was, frame leakage protection does still have some use in some circumstances.  In essence frame leakage is an earth fault...

Smarter Electrical Distribution

The other day I came across an article in Technology Review on the development of a smart transformer. A professor at North Carolina State University is...

Operational Amplifier

The fundamental component of any analogue computer is the operational amplifier, or op amp. An operational amplifier (often called an op-amp,) is a high...

IEC 60287 Current Capacity of Cables - Rated Current

In the previous note we looked at the approach taken by the standard to the sizing of cables and illustrated this with an example.  We then looked at one...

Low Voltage Switchroom Design Guide

Low voltage (LV) switchrooms are common across all industries and one of the more common spatial requirements which need to be designed into a project...

Switchboard - Forms of Internal Separation

IEC 61439 'Low-voltage switchgear and controlgear assemblies', specifies standard arrangements of switchboard (call forms of internal separation). The...

Introduction to Lighting

When looking at the design of a lighting scheme it is useful to have an understanding on the nature of light itself and some of the basic theory associated...

Induction Motor Equivalent Circuit

Induction motors are frequently used in both industrial and domestic applications.  Within the induction motor, an electrical current in the rotor is induced...

Mobile Phones (Brick to Implant)

The mobile phone was born in 1973. They were the size of a brick and weighed a couple of kg, making them difficult to fit into your pocket. At a few thousand...

Cable Sheath and Armour Loss

When sizing cables, the heat generated  by losses within any sheath or armour need to be evaluated. When significant, it becomes a factor to be considered...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note