Differential protection, the good old days 

By on


Image reproduced from
'Network Protection and Automation Guide, by Areva
This morning I was explaining how differential protection works to a junior engineer.  To give him something to read I opened up the NPAG (Network Protection and Automation Guide, by Areva) and turned to Chapter 10  ‘Unit Protection of Feeders’.  I was immediately confronted with Marz and Price, circulating current systems, balanced voltage systems, high impedance series connected relays, illustrations like the one shown, etc. ... and remembered my early years.  A time when if you mentioned differential protection to an electrical engineer, they would turn and run in the opposite direction.

Now, I’m not sure if this applies to everyone, but the systems I have been involved with for the past few years have employed numerical relays for differential protection.  Install the two relays, connect together with an optical fibre and gone are all the problems of trying to do this using wires/current between the relays.   I think this is a pretty clear example of how changes in technology have vastly simplified something.  Not only has it simplified the application of differential protection, it also comes with a host of advancements – being able to use CTs manufactured to different specifications as an example.

Numerical relays and optical links may not be the answer to every situation, but I think they make life easier for most of us. 



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Capacitor Theory

Capacitors are widely used in electrical engineering for functions such as energy storage, power factor correction, voltage compensation and many others...

Three Phase Power Simplified

A single phase system is perhaps the most common type of system most people are familiar with. This is what people have in their homes and what appliances...

Fire Resistant and Fire Retardant Cables

Fire resistant and fire retardant cable sheaths are design to resist combustion and limit the propagation of flames. Low smokes cables have a sheath designed...

Cables for MV Power Distribution - Earthed versus Unearthed Systems

Power cables can basically be classified into earthed and unearthed cables, where earthed and unearthed refer to the application for which the cable is...

Why a Sine Wave?

I received this question by email a few weeks. First thoughts was that it is a product of the mathematics of rotating a straight conductor in a magnetic...

Railway Electrification Voltages

This post is quick introduction and overview to different railway electrification voltages used in answer to a question sent in via email. While there...

Cable Sheath and Armour Loss

When sizing cables, the heat generated  by losses within any sheath or armour need to be evaluated. When significant, it becomes a factor to be considered...

Nikola Tesla

Nikola Tesla was born exactly at midnight on July 10, 1856 in the tiny village of Smiljan, Lika in Croatia. In his late teens, Tesla left the village to...

UPS Battery Sizing

Various techniques exist to enable the correct selection of batteries for UPS applications.  The procedure described below is one of the more common. ...

Star-Delta Motor Starting - Performance

Many questions sent in to the site are in connection with motor starting and in particular star-delta.  For all but the simplest application, there is...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note