Differential protection, the good old days 

By on


Image reproduced from
'Network Protection and Automation Guide, by Areva
This morning I was explaining how differential protection works to a junior engineer.  To give him something to read I opened up the NPAG (Network Protection and Automation Guide, by Areva) and turned to Chapter 10  ‘Unit Protection of Feeders’.  I was immediately confronted with Marz and Price, circulating current systems, balanced voltage systems, high impedance series connected relays, illustrations like the one shown, etc. ... and remembered my early years.  A time when if you mentioned differential protection to an electrical engineer, they would turn and run in the opposite direction.

Now, I’m not sure if this applies to everyone, but the systems I have been involved with for the past few years have employed numerical relays for differential protection.  Install the two relays, connect together with an optical fibre and gone are all the problems of trying to do this using wires/current between the relays.   I think this is a pretty clear example of how changes in technology have vastly simplified something.  Not only has it simplified the application of differential protection, it also comes with a host of advancements – being able to use CTs manufactured to different specifications as an example.

Numerical relays and optical links may not be the answer to every situation, but I think they make life easier for most of us. 



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



How to Size Current Transformers

The correct sizing of current transformers is required to ensure satisfactory operation of measuring instruments and protection relays. Several methods...

IEC Document Designation

Often document control is dictated by project requirements, for example a particular organisation may have an existing numbering system. Existing company...

Low Voltage Switchroom Design Guide

Low voltage (LV) switchrooms are common across all industries and one of the more common spatial requirements which need to be designed into a project...

EU Code of Conduct on Data Centres - Best Practices

The European Union is implementing a voluntary code of practice for participants with the aim of improving the overall efficiency of data centres. As part...

Back to basics - the Watt (or kW)

When thinking about watts (W) or kilowatt (kW = 1000 W) it can be useful too keep in mind the fundamental ideas behind the unit. Watt is not a pure electrical...

Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

Software Usage Guidelines

Using software in our  work is essential for most of us and we are becoming even more dependant on it's use.  While software is a great asset, many times...

Cable Sheath and Armour Loss

When sizing cables, the heat generated  by losses within any sheath or armour need to be evaluated. When significant, it becomes a factor to be considered...

International System of Units (SI System)

The International System of Units (abbreviated SI) is the world's most widely used system of units.  The system consists of a set of units and prefixes...

Random Numbers

Using laser optical pulses the random number generator utilizes the time between arrival of random photos to generate the numbers, ensuring true accuracy...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note