Differential protection, the good old days 

By on


Image reproduced from
'Network Protection and Automation Guide, by Areva
This morning I was explaining how differential protection works to a junior engineer.  To give him something to read I opened up the NPAG (Network Protection and Automation Guide, by Areva) and turned to Chapter 10  ‘Unit Protection of Feeders’.  I was immediately confronted with Marz and Price, circulating current systems, balanced voltage systems, high impedance series connected relays, illustrations like the one shown, etc. ... and remembered my early years.  A time when if you mentioned differential protection to an electrical engineer, they would turn and run in the opposite direction.

Now, I’m not sure if this applies to everyone, but the systems I have been involved with for the past few years have employed numerical relays for differential protection.  Install the two relays, connect together with an optical fibre and gone are all the problems of trying to do this using wires/current between the relays.   I think this is a pretty clear example of how changes in technology have vastly simplified something.  Not only has it simplified the application of differential protection, it also comes with a host of advancements – being able to use CTs manufactured to different specifications as an example.

Numerical relays and optical links may not be the answer to every situation, but I think they make life easier for most of us. 



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



3 Phase Loads

Three phase systems are derived from three separate windings, either connected in delta or star (wye). Each winding can be treated separately, leading...

IEC Document Designation

Often document control is dictated by project requirements, for example a particular organisation may have an existing numbering system. Existing company...

Low Voltage Switchroom Design Guide

Low voltage (LV) switchrooms are common across all industries and one of the more common spatial requirements which need to be designed into a project...

Periodic Electrical Installation Inspection – What to Inspect?

This is the second post in a series of two on periodic electrical inspections. In the first post, I discussed how often inspections should be carried out...

8 Motor parts and common faults

Straight forward list of some common motor faults.  If I have missed any other common faults, please take a bit of time to add them in as a comment below...

Magicians of Engineering

The other day I was reading 'Night of the New Magicians' by Mary Pope Osborn with my son.  The story is about a young boy and girl who travel back in time...

Electromagnetic Compatibility (EMC)

Electromagnetic compatibility (EMC) is the study of coordinating electromagnetic fields give off equipment, with the withstand (compatibility) of other...

Lead Acid Batteries

Lead acid batteries are cost effect and reliable, making them suitable for many applications.This note examines topics of interest associated with the...

Network Theory – Introduction and Review

In electrical engineering, Network Theory is the study of how to solve circuit problems. By analyzing circuits, the engineer looks to determine the various...

Periodic Electrical Installation Inspection – How Often?

How often installations are inspected is up to the owner of the installation, provided such durations do not exceed any regulatory maximums in force. ...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note