Differential protection, the good old days 

By on


Image reproduced from
'Network Protection and Automation Guide, by Areva
This morning I was explaining how differential protection works to a junior engineer.  To give him something to read I opened up the NPAG (Network Protection and Automation Guide, by Areva) and turned to Chapter 10  ‘Unit Protection of Feeders’.  I was immediately confronted with Marz and Price, circulating current systems, balanced voltage systems, high impedance series connected relays, illustrations like the one shown, etc. ... and remembered my early years.  A time when if you mentioned differential protection to an electrical engineer, they would turn and run in the opposite direction.

Now, I’m not sure if this applies to everyone, but the systems I have been involved with for the past few years have employed numerical relays for differential protection.  Install the two relays, connect together with an optical fibre and gone are all the problems of trying to do this using wires/current between the relays.   I think this is a pretty clear example of how changes in technology have vastly simplified something.  Not only has it simplified the application of differential protection, it also comes with a host of advancements – being able to use CTs manufactured to different specifications as an example.

Numerical relays and optical links may not be the answer to every situation, but I think they make life easier for most of us. 



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Variable Frequency Drive

Variable frequency drives are widely used to control the speed of ac motors.  This note looks at the mechanisms which enable drive units to control the...

IEC 60287 Current Capacity of Cables - An Introduction

IEC 60287 "Calculation of the continuous current rating of cables (100% load factor)" is the International Standard which defines the procedures and equations...

Cold Fusion (or not?)

Recently I have seen a few interesting articles on viable cold fusion; the combining of atoms at room like temperatures to create boundless energy. Now...

Electric Motors

Collection of links to various places with useful motor information. I’ll try and return to the page every now and again to update it with any motor notes...

Microsoft OneNote

A couple of months ago I came Microsoft's OneNote and downloaded the 60 day free trail. Since then I have been using it regularly and now have a full license...

Electrical Engineering

Electrical engineering is a field that covers a wide variety of sub-fields, including electricity and electronics. It is a field that goes back to the...

How a Digital Substation Works

Traditionally substations have used circuit breakers, current transformers (CT), voltage transformers (VT) and protection relays all wired together using...

Why a Sine Wave?

I received this question by email a few weeks. First thoughts was that it is a product of the mathematics of rotating a straight conductor in a magnetic...

Nikola Tesla

Nikola Tesla was born exactly at midnight on July 10, 1856 in the tiny village of Smiljan, Lika in Croatia. In his late teens, Tesla left the village to...

Aluminium Windings - Dry Type Transformers

The other day I was talking to a colleague who is a building services consultant.  Despite regularly specifying dry-type/cast resin transformers he was...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note