Understanding Circuit Breaker Markings 

By on

schneiderNSXNamePlate
Typical Circuit Breaker Nameplate
IEC 60947 is the circuit breaker standard and covers the marking of breakers in detail.  Any manufacturer following this standard should comply with the markings.

Name Plate and Breaker Markings

The illustration shows a standard nameplate from a Schneider NSX circuit breaker.   Other manufacturers should have similar information on the breaker.  The standard requires the following by information to be identified and marked on the circuit breaker.

Visible and legible when breaker installed:

  • rated current (In)
  • suitability for isolation, if applicable
  • indication of the open and closed positions

Marked, but need not be visible when installed:

  • manufacturer's name or trade mark and circuit breaker type designation or serial number
  • manufacturing standards the breaker complies with
  • utilization category
  • rated operational voltage (Ue)
  • rated impulse withstand voltage (Uimp)
  • rated frequency and/or the indication d.c.
  • rated service short-circuit breaking capacity (Ics) at corresponding rated voltage (Ue)
  • rated ultimate short-circuit breaking capacity (Icu) at corresponding rated voltage (Ue)
  • rated short-time withstand current (Icw), and associated short-time delay (for utilization category B)
  • line and load terminals (unless their connection is immaterial)
  • neutral pole terminal, if applicable ( by the letter N)
  • protective earth terminal, where applicable, by symbol
  • reference temperature for non-compensated thermal releases, if different from 30 °C

Additional Circuit Breaker Information

In addition to the above the following should be either marked on the circuit breaker or made available in technical documentation:

  • rated short-circuit making capacity (Icm)
  • rated insulation voltage (Ui),
  • pollution degree if other than 3
  • conventional enclosed thermal current (Ithe) if different from the rated current
  • IP Code, where applicable
  • minimum enclosure size and ventilation data (if any) to which marked ratings apply
  • details of minimum distance between circuit-breaker and earthed metal parts for circuit breakers intended for use without enclosures
  • suitability for environment A or environment B, as applicable
  • r.m.s. sensing, if applicable

Auxiliary Devices

Any auxiliary devices should be marked or technical information provided with the following:

  • rated control circuit voltage and frequency of any closing
  • rated control circuit voltage and frequency of any shunt release and/or under-voltage release
  • rated current of indirect over-current releases
  • number and type of auxiliary contacts and rated frequency
  • rated voltages of auxiliary switches (if different from those of the main circuit)

Symbols

The standard identifies the following symbols in connection with circuit breaker markings:

IEC60947Symbols

 

  Hopefully now, the next time we look at a break it should all make sense.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

Electrical Engineering

Electrical engineering is a field that covers a wide variety of sub-fields, including electricity and electronics. It is a field that goes back to the...

Railway Electrification Voltages

This post is quick introduction and overview to different railway electrification voltages used in answer to a question sent in via email. While there...

Medium Voltage Switchgear Room Design Guide

Many medium voltage (MV) indoor switchgear rooms  exist worldwide. The complexity of these rooms varies considerably depending on location, function and...

Electromagnetic Fields - Exposure Limits

Exposure to time varying magnetic fields, from power frequencies to the gigahertz range can have harmful consequences.  A lot of research has been conducted...

ABB Technical Guides - Motor Operation

ABB has produced a range of technical guides that offer concise explanations of the major technologies and technical issues in low voltage AC drives. ...

Arc Flash Calculations

Working in the vicinity of electrical equipment poses an hazard. In addition to electric shock hazard, fault currents passing through air causes Arc Flash...

Induction Motor Calculator

Just added a page to the tools, which will allow you to calculate the synchronous speed, slip and rated torque for an induction motor. Not a particularly...

Welcome back Bottle

‘Kept looking at a card, y’see? Kept looking at it. Welcome back Bottle. Gods below welcome home. The Crippled God A Tale of the Malazan Book of the...

Low Voltage Switchroom Design Guide

Low voltage (LV) switchrooms are common across all industries and one of the more common spatial requirements which need to be designed into a project...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note