Lightning Risk Assessment (IEC 62305) 

By on

IEC 62305 'Protection against lightning' requires a risk assessment be carried out to determine the characteristics of any lightning protection system to be installed. There is a lot of hype about about this being a complicated process, however in reality it is very simple.

Risk Assessment

The procedure requires assigning a tolerable level of risk. A lightning protection level is then chosen to ensure that the calculated risk level is lower than the assigned tolerable level.  This is carried out for each of the following risk types:

  • Loss of Human Life
  • Loss of Public Services
  • Loss of Cultural Heritage
  • Economic Loss

Each country defines it's own tolerable risk values (for example the UK assigns the tolerable risk for loss of cultural heritage as 10-4).  General representative values listed in the standard are:

Type of Loss

Tolerable Risk

Loss of human life or permanent injuries

10-5

Loss of service to the public

10-3

Loss of cultural heritage

10-3

Economic loss

10-3

 

Note: surge protective devices (SPD) when installed, can lower the calculated risks obtained during any assessment exercise.

Lightning Protection Level (LPL)

Four protection levels (I, II, III and IV) are defined by considering the peak current, charge, specific energy, duration of various lightning strokes and the probability of these being exceeded.  Lighting Protection Level I is the most severe, with level IV being the least.

Once a lightning protection level has been selected, this fixes many of the parameters for the design and installation of the system.  For example, the size of the rolling sphere for calculating protection zones is 20 m for a protection level of I, and increases to 60 m for level IV.

Calculation

After reading the standard, calculating the risk level may seem like a complicated process. Help is at hand however. In purchasing the standard the 'IEC Risk Assessment Calculator' software is provided free of charge. This is a very straightforward piece of software to use requiring the structure dimensions to be entered and various parameters selected from drop down lists. The entire process can be completed in only a few minutes and assessment reports generated.

The attached images show the input screen for the software and an example of the assessment report generated. Click on the images to view a bigger picture. this being a complicated process, however in reality it is very simple.

Related Links

The standard can be purchased at:

IEC Risk Assessment Calculator

 

Lightning Assessment Report 1.2

 

Lightning Assessment Report 2.2

 



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



GE's Shingijutsu Factory

GE's latest thinking on product manufacturing is he Shingijutsu philosophy or Lean production system. They have started applying this at the Louisville...

Why a Sine Wave?

I received this question by email a few weeks. First thoughts was that it is a product of the mathematics of rotating a straight conductor in a magnetic...

Restricted Earth Fault Protection

The windings of many medium and small sized transformers are protected by restricted earth fault (REF) systems. The illustration shows the principal of...

Difference Between Live and Dead Tank Circuit Breakers

A quick post in connection with an email question: Live Tank - the circuit breaker the switching unit is located in an insulator bushing which is live...

Fault Calculations - Typical Equipment Parameters

A frequent problem in fault calculations is the obtaining of equipment parameters.  While it is always preferable to use the actual parameters of the equipment...

International System of Units (SI System)

The International System of Units (abbreviated SI) is the world's most widely used system of units.  The system consists of a set of units and prefixes...

Capacitors - Energy Storage Application

Capacitors have numerous applications in electrical and electronic applications.  This note examines the use of capacitors to store electrical energy....

What is Aircraft Ground Power

Ever wondered what kind of power an aircraft uses when parked at the airport stand. Normally the aircraft generates it own power, but when parked with...

Random Numbers

Using laser optical pulses the random number generator utilizes the time between arrival of random photos to generate the numbers, ensuring true accuracy...

Electromechanical Relays

Electromechanical relays have been the traditional backbone of electrical protection systems.  While over recent years these have been replaced by microprocessor...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note