Equipment Verification (to IEC Standards) 

By on


KEMA High Power Laboratory, Netherlands
One of the requirements to ensuring that everything works is to have equipment selected, manufactured and verified [tested] to IEC standards. Not all equipment out there meets this requirements. It is the responsibility of the engineers in the procurement and construction process to ensure that only equipment meeting these requirements is used.

If your involved in this activity you most likely already know what to do and have your own methods for approaching this issue. If your new to this or have just been tasked with verifying equipment meets requirements, hopefully this post will get you started.

Ensuring compliance is not complicated, but there are a couple of things you aware of.

The first is the requirements themselves. Project specifications will often say equipment needs to be manufactured to xyz standard and often stop at that. To fully understand the requirements you need to know what is in xyz standard – which means reading it. The IEC standards in general are pretty good as giving performance requirements and listing the necessary testing and verification activities which need to be carried out. By reading the standard you can gain a really good understanding of what is required to show than an item of equipment will meet the standard.

The second thing to look at is ensuring that the equipment actually does meet the standard. In principal this is achieved by confirming that the equipment has undergone the necessary testing and verification as required by the standard. Generally this falls into two categories:

  1. Type testing and design verification – which is carried out on samples of the product (not necessarily the items to be sold to the customer). This level of testing is generally expensive and is carried out to demonstrate that the general concepts and arrangements of equipment meets the performance requirements of standard.
  2. Routine testing – carried out and each item of equipment which is produces and sold to the customer. This often takes the form of testing at the factory and site testing. It is designed to give confidence that each item of equipment is working as anticipated and that there have been no manufacturing problems introduced.

To confirm that type testing and design verification has been achieved, results of testing from independent third party laboratories are normally accepted. The IEC maintains a list of laboratories (by country) which have been approved to certified to approve compliance with standards. It is advisable to insist on only using certificates from approved laboratories:

Routine testing will cover items as required by the standard and will often involve additional testing as required by the project. This is normally carried out by the manufacturer, but can be a third party if required by the project. These may or may not be witnessed by the project engineers (although usually will be in the case of important equipment).

That’s all there is to it. In practice there is a lot of equipment which does not meet standard out there and pushers of this equipment will be tricky in trying to convince you that it is ok. By following the above, you should be in a position to spot equipment which does not meet standard and ensure that your project is supplied only with reputable equipment.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Copyright Infringement

myElectrical does not support or promote the use of copyrighted material without the copyright owner's consent. If you believe that material for which...

Are We Losing Professional Integrity

I have been thinking recently that there appears to be less professional integrity around than when I first started my career in electrical engineering...

Software Usage Guidelines

Using software in our  work is essential for most of us and we are becoming even more dependant on it's use.  While software is a great asset, many times...

Electromagnetic Fields - Exposure Limits

Exposure to time varying magnetic fields, from power frequencies to the gigahertz range can have harmful consequences.  A lot of research has been conducted...

myElectrical - Cable Sizing Tool Upgrade

Our IEE cable sizing was wrote a few years ago and had become rough around the edges. I thought it was time to give the tool a service. Unfortunately when...

Operational Amplifier

The fundamental component of any analogue computer is the operational amplifier, or op amp. An operational amplifier (often called an op-amp,) is a high...

Electric Motors

Collection of links to various places with useful motor information. I’ll try and return to the page every now and again to update it with any motor notes...

Cable Sheath and Armour Loss

When sizing cables, the heat generated  by losses within any sheath or armour need to be evaluated. When significant, it becomes a factor to be considered...

Lightning Risk Assessment (IEC 62305)

IEC 62305 'Protection against lightning' requires a risk assessment be carried out to determine the characteristics of any lightning protection system...

Windows Live Writer and myElectrical

When making adding a Note to our site we have a great online WYSIWYG editor and things are pretty simple.  However, if you prefer you can write, manage...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note