How to measure power supply quality 

By on

Fluke430PA
Fluke 430 Power Analyser
If your are ever called out to troubleshoot something on your electrical system, one of the first things consider is the supply voltage.  You want to ensure you have a good electrical supply before moving on to other possible problem causes. Here are a few things you can quickly measure to get an impression on the quality of supply:

  • Measure the supply voltage, current and frequency - you want to make sure all these are within expected limits.  If any of the readings are more than 10% out of range, this indicates a problem.
  • Check for phase unbalance - for three phase loads (i.e. motors), the system should be balanced; voltage unbalance of greater than 2% or current unbalance of greater than 6% would potentially indicate a problem.  You can expect some unbalance for single phase loads the phase, however if this is excessive it may still indicate problems.
  • Check for transients - these are more difficult to measure and will need some sort of recording instrument.  Look for transients 50 V and more above nominal.  You should measure for the duration in line with the observed symptoms.
  • Check for voltage dip - look for dips 50 V and more below nominal. Again measure for the duration in line with the observed symptoms.
  • Check the harmonics on the system - total harmonic distortion (THD) of greater than 6% could indicate problems.
  • Check the power factor - this should be inline with expectations.

The above should provide a fair indication that everything is ok with the supply.  If the supply looks good, you can then start investigating potential problems with the equipment itself.

In special cases, the power system parameters are more strictly defined (i.e. the CBEMA Information Technology Curve).  Where applicable, you should be looking to ensure the supply parameters are within the specification.

If you have any additional tips or suggestions on how to ensure the power supply is up to scratch, feel free to add them below.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Gas Insulated or Air Insulated Switchgear

Various arguments exist around SF6 Gas Insulated (GIS) and Air Insulated (AIS) medium voltage switchgear. Recently we had to change a GIS design to AI...

Harmonised Cable Codes and Colours

Within Europe the European Committee for Electrotechnical Standardization (CENELEC) has standardised the both the designation and colour of cables.   ...

Medium Voltage Switchgear Room Design Guide

Many medium voltage (MV) indoor switchgear rooms  exist worldwide. The complexity of these rooms varies considerably depending on location, function and...

Cable Sizing Tool

Our cable sizing tool is one of the more popular tools on the site.  The tool enables cables to be sized in compliance with BS 7671 (the IEE Wiring Regulations...

Capacitors - Energy Storage Application

Capacitors have numerous applications in electrical and electronic applications.  This note examines the use of capacitors to store electrical energy....

How to Check a Circuit is Dead

If you want to check a circuit is dead (not live), you should always use the three point method. First check a known live circuit, then check the dead...

How a Digital Substation Works

Traditionally substations have used circuit breakers, current transformers (CT), voltage transformers (VT) and protection relays all wired together using...

8 Motor parts and common faults

Straight forward list of some common motor faults.  If I have missed any other common faults, please take a bit of time to add them in as a comment below...

Smarter Electrical Distribution

The other day I came across an article in Technology Review on the development of a smart transformer. A professor at North Carolina State University is...

Back to basics - the Watt (or kW)

When thinking about watts (W) or kilowatt (kW = 1000 W) it can be useful too keep in mind the fundamental ideas behind the unit. Watt is not a pure electrical...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note