Fault Calculations - Typical Equipment Parameters 

By on

A frequent problem in fault calculations is the obtaining of equipment parameters. While it is always preferable to use the actual parameters of the equipment, sometimes these are not available. In this instance it is necessary to resort to the use of typical parameters.

This note is intended to become a collection of typical parameters. If there is something missing or needs adding, please leave a comment in the discussion.

HV Network Impedance

Impedance of HV network referred to LV side of transformer

Psc Uo (V) Ra (mΩ) Xa (mΩ)
250 MVA 420 0.106 0.71
500 MVA 420 0.053 0.353

Low Voltage Power Transformers

Transformer Short Circuit Impedance

Typical values short circuit impedance, USC for different kVA ratings (HV winding < 20 kV)

  Type of Transformer
transformer rating oil-immersed cast-resin
50 to 630 4% 6%
800 to 2500 6% 6%

Transformer Impedance (400 V)

Resistance, reactance and impedance for typical transformers (HV winding <20 kV)

transformer rated power (kVA) 50 100 160 250 315 400 500 630 800 1000 1250 1600 2000 2500
oil-immersed Usc % 4 4 4 4 4 4 4 4 6 6 6 6 6 6
  Rtr 95.3 37.9 16.2 9.2 6.9 5.1 3.9 2.9 2.9 2.3 1.8 1.4 1.1 0.9
  Xtr 104.1 59.5 41.0 26.7 21.3 16.9 13.6 10.8 12.9 10.3 8.3 6.5 5.2 4.1
  Ztr 141.1 70.5 44.1 28.2 22.4 17.7 14.1 11.2 13.2 10.6 8.5 6.6 5.3 4.2
cast-resin Usc % 6 6 6 6 6 6 6 6 6 6 6 6 6 6
  Rtr   33.5 18.6 10.7 8.2 6.1 4.6 3.5 2.6 1.9 1.5 1.1 0.8 0.6
  Xtr   100.4 63.5 41.0 32.6 25.8 20.7 16.4 13.0 10.4 8.3 6.5 5.2 4.2
  Ztr   105.8 66.2 42.4 33.6 26.5 21.2 16.8 13.3 10.6 8.4 6.6 5.3 4.2

 

Synchronous Machines

Performance Under Fault Conditions

Sub-transient emf:  myElectrical Equation

Transient emf:  myElectrical Equation 

Synchronous emf:  myElectrical Equation
Fault current: myElectrical Equation

Typical Machine Reactances

Typical Machine Reactances (& Time Constants

  Cylindrical Rotor
Turbine Generators

Salient Pole Generators
  Salient Pole
Synchronous
Condensers

Conventional
Direct
Cooled

4 Pole

Multi-Pole
Synchronous
Direct axis Xd pu 1.6-2.0 0.8-1.0 2.0-2.3 2.1-2.4 1.3-2.1 1.3-1.5
Quadrature axis Xq pu 1.0-1.25 0.5-0.65 1.95-2.1 1.95-2.25 0.6-1.2 0.8-1.0
Transient
Reactance  Xd' pu 0.3-0.5 0.2-0.35 0.18-0.25 0.27-0.30 0.15-0.35 0.4-0.5
Short circuit τd' s 1.5-2.5 1.0-2.0 0.75-1.0 0.75-1.0 0.8-1.2 0.8-1.2
Open circuit τdo' s 5-10 3-7 4-8 6-9.5 4-8 3-7
Sub-transient
Direct axis Xd'' pu 0.2-0.4 0.12-0.25 0.11-0.13 0.19-0.23 0.1-0.25 0.2-0.35
Quadrature axis Xq'' pu 0.25-0.6 0.15-0.45 0.11-0.13 0.19-0.23 0.14-0.35 0.2-0.35
Short circuit - direct axis τd' s 0.04-0.09 0.05-0.10 0.015-0.025 0.02-0.03 0.02-0.04 0.02-0.07
Open circuit - direct axis τd'' s 0.07-0.11 0.08-0.25 0.015-0.025 0.02-0.03 0.04-0.07 0.02-0.07
Short circuit - quadrature axis τq'' s 0.04-0.6 0.05-0.6 0.015-0.025 0.02-0.03 0.10-0.15 0.02-0.07
Open circuit - quadrature axis τq0'' s 0.1-1.2 0.2-0.9 0.015-0.025 0.02-0.03 0.3-0.7 0.1-0.2
Other Reactances
Negative sequence X-ve pu 0.25-0.5 0.14-0.35 0.11-0.13 0.19-0.23 0.12-0.3 0.2-0.35
Zero sequence  Xo pu 0.12-0.16 0.06-0.10 0.05-0.075 0.11-0.16 0.03-0.10 0.1-0.2

Cables

myElectrical Equation
myElectrical Equation

where:

d = distance between centre
r = geometric mean radius
a = cross sectional area (mm)

TypicalEquipmentCables



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Fire Resistant and Fire Retardant Cables

Fire resistant and fire retardant cable sheaths are design to resist combustion and limit the propagation of flames. Low smokes cables have a sheath designed...

How to Calculate Motor Starting Time

Request to look at induction motor starting time have come up a few times on the site. Hopefully in this post, I give you guys some idea on how to calculate...

Inductance

When current flows within a wire, a magnetic field is created. The potion of this magnetic field perpendicular to the wire is called the magnetic flux...

Lead us, Warleader

Delum, who had watched all in silence, his face empty of expression, now spoke in turn. ' "Lead us, Warleader, into glory."' Reading is something I do...

How to Check a Circuit is Dead

If you want to check a circuit is dead (not live), you should always use the three point method. First check a known live circuit, then check the dead...

Introduction to Lighting

When looking at the design of a lighting scheme it is useful to have an understanding on the nature of light itself and some of the basic theory associated...

Lead Acid Batteries

Lead acid batteries are cost effect and reliable, making them suitable for many applications.This note examines topics of interest associated with the...

Harmonised Cable Codes and Colours

Within Europe the European Committee for Electrotechnical Standardization (CENELEC) has standardised the both the designation and colour of cables.   ...

Periodic Electrical Installation Inspection – What to Inspect?

This is the second post in a series of two on periodic electrical inspections. In the first post, I discussed how often inspections should be carried out...

Gas Insulated or Air Insulated Switchgear

Various arguments exist around SF6 Gas Insulated (GIS) and Air Insulated (AIS) medium voltage switchgear. Recently we had to change a GIS design to AI...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note