Fault Calculations - Typical Equipment Parameters 

By on

A frequent problem in fault calculations is the obtaining of equipment parameters. While it is always preferable to use the actual parameters of the equipment, sometimes these are not available. In this instance it is necessary to resort to the use of typical parameters.

This note is intended to become a collection of typical parameters. If there is something missing or needs adding, please leave a comment in the discussion.

HV Network Impedance

Impedance of HV network referred to LV side of transformer

Psc Uo (V) Ra (mΩ) Xa (mΩ)
250 MVA 420 0.106 0.71
500 MVA 420 0.053 0.353

Low Voltage Power Transformers

Transformer Short Circuit Impedance

Typical values short circuit impedance, USC for different kVA ratings (HV winding < 20 kV)

  Type of Transformer
transformer rating oil-immersed cast-resin
50 to 630 4% 6%
800 to 2500 6% 6%

Transformer Impedance (400 V)

Resistance, reactance and impedance for typical transformers (HV winding <20 kV)

transformer rated power (kVA) 50 100 160 250 315 400 500 630 800 1000 1250 1600 2000 2500
oil-immersed Usc % 4 4 4 4 4 4 4 4 6 6 6 6 6 6
  Rtr 95.3 37.9 16.2 9.2 6.9 5.1 3.9 2.9 2.9 2.3 1.8 1.4 1.1 0.9
  Xtr 104.1 59.5 41.0 26.7 21.3 16.9 13.6 10.8 12.9 10.3 8.3 6.5 5.2 4.1
  Ztr 141.1 70.5 44.1 28.2 22.4 17.7 14.1 11.2 13.2 10.6 8.5 6.6 5.3 4.2
cast-resin Usc % 6 6 6 6 6 6 6 6 6 6 6 6 6 6
  Rtr   33.5 18.6 10.7 8.2 6.1 4.6 3.5 2.6 1.9 1.5 1.1 0.8 0.6
  Xtr   100.4 63.5 41.0 32.6 25.8 20.7 16.4 13.0 10.4 8.3 6.5 5.2 4.2
  Ztr   105.8 66.2 42.4 33.6 26.5 21.2 16.8 13.3 10.6 8.4 6.6 5.3 4.2

 

Synchronous Machines

Performance Under Fault Conditions

Sub-transient emf:  myElectrical Equation

Transient emf:  myElectrical Equation 

Synchronous emf:  myElectrical Equation
Fault current: myElectrical Equation

Typical Machine Reactances

Typical Machine Reactances (& Time Constants

  Cylindrical Rotor
Turbine Generators

Salient Pole Generators
  Salient Pole
Synchronous
Condensers

Conventional
Direct
Cooled

4 Pole

Multi-Pole
Synchronous
Direct axis Xd pu 1.6-2.0 0.8-1.0 2.0-2.3 2.1-2.4 1.3-2.1 1.3-1.5
Quadrature axis Xq pu 1.0-1.25 0.5-0.65 1.95-2.1 1.95-2.25 0.6-1.2 0.8-1.0
Transient
Reactance  Xd' pu 0.3-0.5 0.2-0.35 0.18-0.25 0.27-0.30 0.15-0.35 0.4-0.5
Short circuit τd' s 1.5-2.5 1.0-2.0 0.75-1.0 0.75-1.0 0.8-1.2 0.8-1.2
Open circuit τdo' s 5-10 3-7 4-8 6-9.5 4-8 3-7
Sub-transient
Direct axis Xd'' pu 0.2-0.4 0.12-0.25 0.11-0.13 0.19-0.23 0.1-0.25 0.2-0.35
Quadrature axis Xq'' pu 0.25-0.6 0.15-0.45 0.11-0.13 0.19-0.23 0.14-0.35 0.2-0.35
Short circuit - direct axis τd' s 0.04-0.09 0.05-0.10 0.015-0.025 0.02-0.03 0.02-0.04 0.02-0.07
Open circuit - direct axis τd'' s 0.07-0.11 0.08-0.25 0.015-0.025 0.02-0.03 0.04-0.07 0.02-0.07
Short circuit - quadrature axis τq'' s 0.04-0.6 0.05-0.6 0.015-0.025 0.02-0.03 0.10-0.15 0.02-0.07
Open circuit - quadrature axis τq0'' s 0.1-1.2 0.2-0.9 0.015-0.025 0.02-0.03 0.3-0.7 0.1-0.2
Other Reactances
Negative sequence X-ve pu 0.25-0.5 0.14-0.35 0.11-0.13 0.19-0.23 0.12-0.3 0.2-0.35
Zero sequence  Xo pu 0.12-0.16 0.06-0.10 0.05-0.075 0.11-0.16 0.03-0.10 0.1-0.2

Cables

myElectrical Equation
myElectrical Equation

where:

d = distance between centre
r = geometric mean radius
a = cross sectional area (mm)

TypicalEquipmentCables



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Maximum Demand for Buildings

Estimating maximum demand is a topic frequently discussed. Working out how much power to allow for a building can be very subjective . Allowing too much...

Control Theory

Control theory looks at how systems work and are controlled from a mathematical view.  This note gives a brief introduction to some of the concepts – more...

Contribute to myElectrcial

Have an opinion or something to say, want to ask or answer questions, share your knowledge then use our site to do it . As a community of people interested...

Random Numbers

Using laser optical pulses the random number generator utilizes the time between arrival of random photos to generate the numbers, ensuring true accuracy...

Electromagnetic Fields - Exposure Limits

Exposure to time varying magnetic fields, from power frequencies to the gigahertz range can have harmful consequences.  A lot of research has been conducted...

Standard Cable & Wire Sizes

IEC 60228 is the International Electrotechnical Commission's international standard on conductors of insulated cables. Among other things, it defines a...

Cables for MV Power Distribution - Earthed versus Unearthed Systems

Power cables can basically be classified into earthed and unearthed cables, where earthed and unearthed refer to the application for which the cable is...

GE's Shingijutsu Factory

GE's latest thinking on product manufacturing is he Shingijutsu philosophy or Lean production system. They have started applying this at the Louisville...

How to Calculate Motor Starting Time

Request to look at induction motor starting time have come up a few times on the site. Hopefully in this post, I give you guys some idea on how to calculate...

Electromagnetic Compatibility (EMC)

Electromagnetic compatibility (EMC) is the study of coordinating electromagnetic fields give off equipment, with the withstand (compatibility) of other...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note