International System of Units (SI System) 

By on

si_petitThe International System of Units (abbreviated SI) is the world's most widely used system of units.  The system consists of a set of units and prefixes. 

Note: this SI system is being revised to define the unit of mass in terms of fundamental constants. In addition the definitions ampere and kelvin will revised.

Several countries have only partially adopted the SI System; the United States being notable in this regard.  A full list of SI units, a conversion calculator and conversion tables are maintained at:

Base Units

There are seven base units, from which all other units are derived.  Each base unit is dimensionally independent.

Name Symbol Quantity
meter m The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.
kilogram kg The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
second s The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.
ampere A The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between these conductors a force equal to 2 x 10–7 newton per metre of length.
kelvin K The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.
mole mol The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
candela cd The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 x 1012 hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

Prefixes

Factor Name Symbol      Factor Name Symbol
101 deca da   10-1 deci d
102 hecto h   10-2 centi c
103 kilo k   10-3 mili m
106 mega M   10-6 micro μ
109 giga G   10-9 nano n
1012 tera T   10-12 pico p
1015 peta P   10-15 femto f
1018 exa E   10-18 atto a
1021 zetta Z   10-21 zepto z
1024 yotta Y   10-24 yocto y

Derived Units

Mechanical Units

  Symbol SI Unit Base Units
Acceleration a m s-2 m s-2
Angular Frequency ω rad s-1 rad s-1
Angular Momentum L kg m² s-1 kg m² s-1
Area A, S
Density ρ kg m-3 kg m-3
Energy E J (Joule) m² kg s-2
Force F N (Newton) m kg s-2
Frequency v, f Hz (Hertz) s-1
Momentum p kg m s-1 kg m s-1
Moment of Inertia I, J kg m² kg m²
Pressure P Pa (Pascal) m-1 kg s-2
Power P W (Watt) m² kg s-3
Speed, linear u m s-1 m s-1
Speed, rotational ω rad s-1 rad s-1
Stress p Pa m-1 kg s-2
Surface Tension λ N m-1 kg s-2
Torque T N m-1 kg s-2
Velocity u, v m s-1 m s-1
Viscosity: kinematic   m2 s-1 m2 s-1
Viscosity: dynamic μ, v Pa s m-1 kg s-1
Work We J m² kg s-2

Electrical & Magnetic Units

Symbol SI Unit Base Units
Admittance Y S (Siemens) m-2 kg-1 s³ A²
Capacitance C F (Farad) m-2 kg-1 s4
Charge Q C (Coulomb) s A
Charge density, area ρ C m-3 m-3 s A
Conductance G S (Siemens) m-2 kg-1 s³ A²
Conductivity σ S m-1 m-3 kg-1 s³ A²
Current (base unit) I, I A (Ampere) A
Current density J A m-2 A m-2
Electric field strength E V m-1 m kg s-3 A-1
Electric flux ψ C (coulomb) s A
Electric flux density D C m-2 m-2 s A
Electromotive force (e.m.f.) E, e V m² kg s-3 A-1
Frequency F Hz (Hertz) s-1
Impedance Z Ω m² kg s-3 A-2
Inductance, mutual M H m² kg s-2 A-2
Inductance, self L H (Henry) m² kg s-2 A-2
Magnetic field strength H A m-1 A m-1
Magnetic flux Φ, φ Wb (Weber) m² kg s-2 A-1
Magnetic flux density B T (Tesla) kg s-2 A-1
Magnetic flux linkage ψ Wb m² kg s-2 A-1
Magnetomotive force F A (ampere) A
    At (ampere-turns) A-turns
Permeability, absolute μ H m-1 m kg s-2 A-2
Permeability, free space μo H m-1 m kg s-2 A-2
Permeability, relative μr    
Permittivity, absolute ε F m-1 m-3 kg-1 s4
Permittivity, free space εo F m-1 m-3 kg-1 s4
Permittivity, relative εr    
Potential difference U, V V (Volt) m² kg s-3 A-1
Power, active P W(Watt) m² kg s-3
Power, apparent S VA m² kg s-3
Power, reactive Q var m² kg s-3
Reactance X Ω m² kg s-3 A-2
Reactive volt-ampere Q var  
Reluctance S A Wb-1 m-2 kg-1 s² A²
Resistance R Ω (Ohm) m² kg s-3 A-2
Resistivity Ω.m m3 kg s-3 A-2
Susceptance B S (Siemens) m-2 kg-1 s³ A²
Volt-ampere   VA V A
Voltage U, V V m² kg s-3 A-1
Wavelength λ m m

Heat Units

Symbol SI Unit Base Units
Critical pressure pc Pa (Pascal) m-1 kg s-2
Critical temperature Tc K K
Critical volume Vc
Cubic expansivity γ K-1 K-1
Heat capacity C J K-1 m² kg s-1 K-1
Linear expansivity α K-1 K-1
Molar heat capacity Cm J mol-1 K-1 m² kg s-2 mol-1 K-1
Quantity of heat Q J (Joule) m² kg s-2
Specific heat capacity cp, cv J kg-1 K-1 m² s-2 K-1
Specific latent heat l J kg-1 m2 s-2
Temperature t, θ, T K K
Thermal conductivity λ J m-1 s-1 K-1 m kg s-3 K-1
    W m-1 K-1

Photometric Optical Units

  Symbol SI Unit Base Units
Illuminance E lx (Lux) m-2 cd sr
Luminance L cd m-2 cd m-2
Luminous flux Φ, φ lm (Lumen) cd sr
Luminous efficacy   lm W-1 cd sr m-2 kg-1

Acoustical Units

  Symbol SI Unit Base Units
Frequency f Hz (Hertz) s-1
Intensity I W m-2 kg s-3
Power ratio   dB  
Reverberation time   s s

Writing Style

symbols – roman upright type, lowercase, un-capitalised (unless derived from a proper name), no full stop, not pluralised

space – a space separates number and the symbol, i.e. 124 kg, 2500 A

derived – units derived are expressed with space, dot and/or solidus (/), i.e. N m, N·m, m/s, m s-1, m·s-1

External Links



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Low Voltage Circuit Breakers

Circuit breakers are switching devices whose primary function is to isolate parts of an electrical distribution system in the even of abnormal conditions...

Motor Efficiency Classification

Electric motors are one of the most widely used items of electrical equipment. Improving motor efficiency benefits include, reduced power demand, lower...

IEC 60287 Current Capacity of Cables - An Introduction

IEC 60287 "Calculation of the continuous current rating of cables (100% load factor)" is the International Standard which defines the procedures and equations...

Introduction to Traction Substations

Following on from my post on railway electrification voltages, I thought an introduction to traction substations would be a good idea. Traction substations...

IEC 60287 Current Capacity of Cables - Rated Current

In the previous note we looked at the approach taken by the standard to the sizing of cables and illustrated this with an example.  We then looked at one...

Meeting room of the future

The IET site has a video of a visit showing of a high tech meeting room developed at Napier University in Edinburgh. It a good demonstration of innovative...

Cables for MV Power Distribution - Earthed versus Unearthed Systems

Power cables can basically be classified into earthed and unearthed cables, where earthed and unearthed refer to the application for which the cable is...

Surface Treatment – Ladders, Trays and Baskets

Steel ladders, trays and baskets form the backbone of cable containment systems. Often these items need some form of surface treatment to prevent corrosion...

Understanding Motor Duty Rating

One of the comments on my Motor Starting Series was asking for something on duty cycles. Here it is. As a purchaser of a motor, you have responsibility...

Maximum Demand for Buildings

Estimating maximum demand is a topic frequently discussed. Working out how much power to allow for a building can be very subjective . Allowing too much...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note