Operational Amplifier 

By on

The fundamental component of any analogue computer is the operational amplifier, or op amp. An operational amplifier (often called an op-amp,) is a high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output.

Op-amps are among the most widely used electronic devices today, being used in a vast array of consumer, industrial, and scientific devices. Many standard IC op-amps cost only a few cents in moderate production volume; however some integrated or hybrid operational amplifiers with special performance specifications may cost significantly more.

Operation

Basic Op Amp CircuitThe amplifier's differential inputs consist of a V+ input and a V input, and ideally the op amp amplifies only the difference in [[voltage]] between the two (called the differential input voltage). The output voltage of the op-amp is given by the equation:

myElectrical Equation 

where V+ is the voltage at the non-inverting terminal, V- is the voltage at the inverting terminal and AOL is the open-loop gain of the amplifier.

The magnitude of AOL is typically very large (seldom less than a million) and even a quite small differential input voltage will result in amplifier saturation.

If linear operation is desired, negative feedback must be used and is usually achieved by applying a portion of the output voltage to the inverting input. The feedback enables the output of the amplifier to keep the inputs at or near the same voltage so that saturation does not occur.

Idea Op Amp

An ideal op-amp is would have the following properties. In practice, none of these ideals can be realized, and various shortcomings and compromises have to be accepted.

  • Infinite open-loop gain
  • Infinite voltage range available at the output
  • Infinite bandwidth
  • Infinite input impedance
  • Zero input current
  • Zero input offset voltage
  • Infinite slew rate
  • Zero output impedance
  • Zero noise
  • Infinite common-mode rejection ratio (CMRR)
  • Infinite power supply rejection ratio

Applications

Op-amps are often used in electronic circuit design. The use of op-amps as circuit blocks is generally much easier and clearer than specifying all their individual circuit elements ([[transistors]],[[resistor| resistors]], etc.).

Basic Op 'Amp' Circuits

 

Circuit Transfer Function
Inverting amplifier
myElectrical Equation
Non-inverting amplifier
myElectrical Equation
Differential input amplifier

myElectrical Equation

with

myElectrical Equation

Adding, Subtracting & Scaling
myElectrical Equation
Voltage follower
myElectrical Equation
Current amplifier

myElectrical Equation
Integrating amplifier
myElectrical Equation
Differentiating amplifier

myElectrical Equation

 

Voltage Gain of Op-amps

Op Amp Gain
Op-amp Gain

Real op-amp such as the commonly available uA741, do not have infinite gain or bandwidth but have a typical "Open Loop Gain". This is defined as the amplifiers output amplification without any external feedback signals connected to it and for a typical operational amplifier is 105 to 106 at DC (zero Hz). This output gain decreases linearly with frequency down to "Unity Gain" or 1, at about 1MHz.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus

  1. on ap's avatar on ap says:
    10/26/2013 4:59 PM

    I like this page so much. All imformation here help for my work


Comments are closed for this post:
  • have a question or need help, please use our Questions Section
  • spotted an error or have additional info that you think should be in this post, feel free to Contact Us



Maxwell's Equations - Introduction

Maxwell's Equations are a set of fundamental relationships, which govern how electric and magnetic fields interact. The equations explain how these fields...

Earth Electrode Resistance

Earthing of electrical systems is essential for the correct functioning and the protecting of life and equipment in the event of faults.  The earth electrode...

EU Code of Conduct on Data Centres - Best Practices

The European Union is implementing a voluntary code of practice for participants with the aim of improving the overall efficiency of data centres. As part...

Equipment Verification (to IEC Standards)

One of the requirements to ensuring that everything works is to have equipment selected, manufactured and verified [tested] to IEC standards. Not all equipment...

Our internet address and Vanity URLs

Visitors who like to type web address rather then click menus may be interested in how our URL structure works.

MIT OpenCourseWare

MIT OpenCourseWare, makes the materials used in teaching all MIT subjects available on the Web, free of charge, to any user in the world.

How to Write an Electrical Note

Electrical notes are a collaborative collection of electrical engineering information and educational material. Any registered user can add content. ...

Control Theory

Control theory looks at how systems work and are controlled from a mathematical view.  This note gives a brief introduction to some of the concepts – more...

Occam's Razor

I was reminded of Occam's Razor while reading a book. It's quite a simple principal of logic which has stood the test of time and is accepted as central...

Alternating Current Circuits

Alternating current (a.c.) is the backbone of modern electrical power distribution. In this article I’ll be pulling some of the more important concepts...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note