110 or 230 Volts 

By on

Why the Difference

I've been considering a post on the 110 or 230 Volt issue for a while.  While browsing the Internet I came across a great summary by Borat over at  engineering.com.  He summarises the issue as:

  • Historical reasons. Edison insisted on 110 V (DC) but was convinced by Westinghouse to switch to AC so that transformers (step up/down) could be used. So that became the North American standard. In Europe AEG started with 110 V (following Edison) but at 50 Hz (instead of North American 60 Hz) because it fit neater into the metric system. After WWII the voltage was doubled to 220 V because higher voltages use less copper - which was at a premium. Other countries in the world usually followed the standards of their colonizing powers. The proliferation of 110 V receptacles and devices in North America prevented the doubling of voltage but that is one of the reasons your large appliances use 220-240V plugs. 

World Wide Breakdown

A bit more Googling found this Wikipedia image.  The image graphically shows a comparison of various voltages between different countries.


Source: Wikipedia
http://en.wikipedia.org/wiki/File:WorldMap_Voltage%26Frequency.png

Time to Reconsider a Single Worldwide Voltage Standard

There must be be massive advantages to standardisation on a single world wide voltage. Equipment would only need to be designed, built and tested for one voltage.  Supply systems would only need to be  designed, installed and testing for a single voltage.  Standardisation would be simplified by only having to deal with on voltage. 

With the world becoming more interconnected with a rapid increase in transfers of skills and materials across countries is it not time to reconsider the adoption of a single world voltage.

The Best Voltage

National pride and  arguments on installed systems etc. are the biggest obstacle to agreeing on a standard single worldwide voltage. Sooner or later surely these need to be overcome.

In looking at a standard level for a world voltage, I think there is an argument for considering the IEC accepted level of 230 V.  It appears to me that this voltage level has a significant number of advantages over 110 V:

  • there is a significant amount of international IEC standardisation based around 230 V
  • most countries are already operating at this voltage (or very close to it)
  • most residential/commercial equipment can be operated satisfactorily at this voltage
  • losses and material usage is reduced, making it a more sustainable selection

And Sockets

Assuming a universal adoption of 230 V, I also think the UK type square 3-pin plug would be a good choice for a common socket.  Currently this is only used on 230 V systems, has integrated earthing facilities, is a proven safe design and would be easily recognised.  Other socket outlets don't have all these features.  In addition, given the visual similarity between many other outlets (even if they are different) could make their use more confusing in the long run.

Will it happen

Given that we still do not have universal adoption of the SI system,  my guess for a universal domestic voltage is that this is probably unlikely in the near future.   This is unfortunate as the long term benefits would significantly outweigh any short/medium term disruptions in implementing a common system.

Related Links



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Autonomous Vehicle Challenge

Two driverless and solar power vans have departed from Italy on their way to China via the silk road. During the 13,000 kM trip the vans will drive themselves...

Restricted Earth Fault Protection

The windings of many medium and small sized transformers are protected by restricted earth fault (REF) systems. The illustration shows the principal of...

Michael Faraday (the father of electrical engineering)

Famed English chemist and physicist Michael Faraday was born on September 22, 1791, in Newington Butts, a suburb of Surrey just south of the London Bridge...

Understanding LV Circuit Breaker Fault Ratings

I think this post is going to be helpful to several of our readers. While the IEC low voltage circuit breaker Standard [IEC 60947-2, Low voltage switchgear...

UPS Battery Sizing

Various techniques exist to enable the correct selection of batteries for UPS applications.  The procedure described below is one of the more common. ...

Understanding Circuit Breaker Markings

IEC 60947 is the circuit breaker standard and covers the marking of breakers in detail. Any manufacturer following this standard should comply with the...

New Mail Chimp

We've been sending out Newsletters on a regular basis for a few weeks now. To do this we have been using Google's Feedburner service. While Feedburner...

Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

Lead Acid Batteries

Lead acid batteries are cost effect and reliable, making them suitable for many applications.This note examines topics of interest associated with the...

UPS Sizing - Rules of Thumb

It wasn't so long ago I was telling someone that I don't use rules of thumb as most things are easily calculated anyhow.   As it turns out I last week...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note