Fault Calculations - Typical Equipment Parameters 

By on

A frequent problem in fault calculations is the obtaining of equipment parameters. While it is always preferable to use the actual parameters of the equipment, sometimes these are not available. In this instance it is necessary to resort to the use of typical parameters.

This note is intended to become a collection of typical parameters. If there is something missing or needs adding, please leave a comment in the discussion.

HV Network Impedance

Impedance of HV network referred to LV side of transformer

Psc Uo (V) Ra (mΩ) Xa (mΩ)
250 MVA 420 0.106 0.71
500 MVA 420 0.053 0.353

Low Voltage Power Transformers

Transformer Short Circuit Impedance

Typical values short circuit impedance, USC for different kVA ratings (HV winding < 20 kV)

  Type of Transformer
transformer rating oil-immersed cast-resin
50 to 630 4% 6%
800 to 2500 6% 6%

Transformer Impedance (400 V)

Resistance, reactance and impedance for typical transformers (HV winding <20 kV)

transformer rated power (kVA) 50 100 160 250 315 400 500 630 800 1000 1250 1600 2000 2500
oil-immersed Usc % 4 4 4 4 4 4 4 4 6 6 6 6 6 6
  Rtr 95.3 37.9 16.2 9.2 6.9 5.1 3.9 2.9 2.9 2.3 1.8 1.4 1.1 0.9
  Xtr 104.1 59.5 41.0 26.7 21.3 16.9 13.6 10.8 12.9 10.3 8.3 6.5 5.2 4.1
  Ztr 141.1 70.5 44.1 28.2 22.4 17.7 14.1 11.2 13.2 10.6 8.5 6.6 5.3 4.2
cast-resin Usc % 6 6 6 6 6 6 6 6 6 6 6 6 6 6
  Rtr   33.5 18.6 10.7 8.2 6.1 4.6 3.5 2.6 1.9 1.5 1.1 0.8 0.6
  Xtr   100.4 63.5 41.0 32.6 25.8 20.7 16.4 13.0 10.4 8.3 6.5 5.2 4.2
  Ztr   105.8 66.2 42.4 33.6 26.5 21.2 16.8 13.3 10.6 8.4 6.6 5.3 4.2

 

Synchronous Machines

Performance Under Fault Conditions

Sub-transient emf:  myElectrical Equation

Transient emf:  myElectrical Equation 

Synchronous emf:  myElectrical Equation
Fault current: myElectrical Equation

Typical Machine Reactances

Typical Machine Reactances (& Time Constants

  Cylindrical Rotor
Turbine Generators

Salient Pole Generators
  Salient Pole
Synchronous
Condensers

Conventional
Direct
Cooled

4 Pole

Multi-Pole
Synchronous
Direct axis Xd pu 1.6-2.0 0.8-1.0 2.0-2.3 2.1-2.4 1.3-2.1 1.3-1.5
Quadrature axis Xq pu 1.0-1.25 0.5-0.65 1.95-2.1 1.95-2.25 0.6-1.2 0.8-1.0
Transient
Reactance  Xd' pu 0.3-0.5 0.2-0.35 0.18-0.25 0.27-0.30 0.15-0.35 0.4-0.5
Short circuit τd' s 1.5-2.5 1.0-2.0 0.75-1.0 0.75-1.0 0.8-1.2 0.8-1.2
Open circuit τdo' s 5-10 3-7 4-8 6-9.5 4-8 3-7
Sub-transient
Direct axis Xd'' pu 0.2-0.4 0.12-0.25 0.11-0.13 0.19-0.23 0.1-0.25 0.2-0.35
Quadrature axis Xq'' pu 0.25-0.6 0.15-0.45 0.11-0.13 0.19-0.23 0.14-0.35 0.2-0.35
Short circuit - direct axis τd' s 0.04-0.09 0.05-0.10 0.015-0.025 0.02-0.03 0.02-0.04 0.02-0.07
Open circuit - direct axis τd'' s 0.07-0.11 0.08-0.25 0.015-0.025 0.02-0.03 0.04-0.07 0.02-0.07
Short circuit - quadrature axis τq'' s 0.04-0.6 0.05-0.6 0.015-0.025 0.02-0.03 0.10-0.15 0.02-0.07
Open circuit - quadrature axis τq0'' s 0.1-1.2 0.2-0.9 0.015-0.025 0.02-0.03 0.3-0.7 0.1-0.2
Other Reactances
Negative sequence X-ve pu 0.25-0.5 0.14-0.35 0.11-0.13 0.19-0.23 0.12-0.3 0.2-0.35
Zero sequence  Xo pu 0.12-0.16 0.06-0.10 0.05-0.075 0.11-0.16 0.03-0.10 0.1-0.2

Cables

myElectrical Equation
myElectrical Equation

where:

d = distance between centre
r = geometric mean radius
a = cross sectional area (mm)

TypicalEquipmentCables



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Inductance

When current flows within a wire, a magnetic field is created. The potion of this magnetic field perpendicular to the wire is called the magnetic flux...

Back to Basics - Ohm’s Law

Electrical engineering has a multitude of laws and theorems. It is fair to say the Ohm's Law is one of the more widely known; it not the most known. Developed...

Voltage Drop in Installations - Concepts

Problems on achieving maximum voltage drop within an installation come up often. Depending where you live, local regulations will have different limits...

RLC Circuit, Resistor Power Loss - some Modelica experiments

Modelica is an open source (free) software language for modelling complex systems. Having never used it before, I thought I would download a development...

Voltage Levels to IEC 60038

The standard aims to consolidate AC and traction voltages within the industry and defines the following bands: band 1 - A.C. systems 100 V to 1...

Useful Motor Technical Information

Sometimes it’s useful to be able to quickly lookup a piece of technical information.  This note is a collection of information related to motors, and in...

Network Theory – Introduction and Review

In electrical engineering, Network Theory is the study of how to solve circuit problems. By analyzing circuits, the engineer looks to determine the various...

Tips for a better Low Voltage Protection Discrimination Study

Carrying out a protection system discrimination study is critical to ensure the correct functioning of  the electrical system in the event of faults. ...

Switchboard - Forms of Internal Separation

IEC 61439 'Low-voltage switchgear and controlgear assemblies', specifies standard arrangements of switchboard (call forms of internal separation). The...

Lead Acid Batteries

Lead acid batteries are cost effect and reliable, making them suitable for many applications.This note examines topics of interest associated with the...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note