Introduction to Cathodic Protection 

By on

sacrificalAnodeShip
Sacrificial aluminium anodes on a ship
Image Source: Cathodic Marine Engineering
If two dissimilar metals are touching and an external conducting path exists, corrosion of one the metals can take place.  Moisture or other materials acting as an electrolyte between the metals create an electrochemical cells  (similar to that of a battery).  Depending on the metals, one will act as a cathode and one as an anode of the cell. 

Under this arrangement, stray d.c. currents will flow. In the same was a a normal cell, an electrochemical reaction takes place and there is a resulting corrosion of the anode. 

In practice, while it could be two dissimilar metals (steel aluminium for example),  corrosion could also be a result of microscopic differences in composition of the surface of a single metal.

Cathodic protection works be converting all anodes which are likely to corrode the cathodes.  There are two principle methods of doing this:

  1. attaching a more active metal to form a new anode (making the existing anode the cathode) - resulting in the new material (sacrificial anode) being corroded rather than the protected material
  2. injection of a a d.c. current (impressed current) uses an anode connected to an external d.c. source to provide the protection

History: it was the English Chemist, Sir Humphrey Davis (1778-1829), who first proposed the concepts of cathodic protection. The first application was to protect the copper plating of British naval ships in 1824[1].

Sacrificial Anode

This is the practice of using a more active metal (sacrificial anode) connected to a structure to be protected, knowing that this metal will be corroded.  One example of this would be the use of aluminium sacrificial anodes to protect steel structures in seawater.

Sacrificial anodes need to be electrically connected to the structure being protected.

Note: galvanised steel cable trays and trunking are commonly used. Here a sacrificial coating of zinc is applied which acts acts the anode, preventing corrosion.

Impressed DC Current

ICCP
Principle of ICCP
Impressed current cathodic protection (ICCP) forces the structure to be protected to become the cathode by connection to an anode and injection of a  direct current.  The d.c. power supplies typically vary the current to achieve a required protection potential.

In ICCP systems, anodes can range from low end consumable metals to more exotic materials which will exhibit little or no corrosion. 

Cathode and Anodes

When two metals are connected, determination of which will be the cathode and anode is made by looking at the relative galvanic potentials of each material.  Of the two materials, the metal with the lowest potential will be the anode.

When measuring metals to find their galvanic potential each needs to be measured against a common common cathode (hence the term "Anodic Index" is often used).  The following table shows typical galvanic potential of several metals as measured using a gold anode.

If measured against a different cathode, while the values of the galvanic potentials would be different, it is the relative difference in potential between the two metals under consideration in any situation which is important.

Metal Potential
Gold 0.00 (most cathodic)
Rhodium

-0.05

Silver

-0.15

Nickel

-0.30

Copper

-0.35

Brass & bronzes

-0.40 to -0.45

Stainless Steels

-0.50

Chromium Plated

-0.60

Tin

-0.65

Lead

-0.70

Aluminium (wrought)

-0.75 to -0.90

Iron, wrought

-0.85

Aluminium (cast)

-0.95

Zinc

-1.20 to -1.25

Magnesium

-1.75

Beryllium

-1.85 (most anodic)

The amount of potential difference required between metals for corrosion to occur varies and is defendant on the environment. As a rule of thumb,  many people take an 0.25 V difference of normal environments, 0.5 V where the humidity (and temperature) are controlled and 0.15 V for more harsh industrial environments[1].

As an example of using the table, we can see the potential difference between copper and aluminium is of the order 0.6 V, giving a combination which is to be particularly avoided.  In practice special bi-metalic connections need to be employed whenever aluminium conductors are to be connected to copper conductors.

References:



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Are We Losing Professional Integrity

I have been thinking recently that there appears to be less professional integrity around than when I first started my career in electrical engineering...

Power Factor

Power factor is the ratio between the real power (P in kW) and apparent power (S in kVA) drawn by an electrical load. The reactive power (Q in kVAr)...

Tech Topics/Application Notes - Siemens

There are a lot of interesting two page type notes on various medium voltage topics – switchgear, circuit breakers, bus systems etc. It is on the Siemens...

Our internet address and Vanity URLs

Visitors who like to type web address rather then click menus may be interested in how our URL structure works.

Contribute to myElectrcial

Have an opinion or something to say, want to ask or answer questions, share your knowledge then use our site to do it . As a community of people interested...

RLC Circuit, Resistor Power Loss - some Modelica experiments

Modelica is an open source (free) software language for modelling complex systems. Having never used it before, I thought I would download a development...

Motor Insulation

Insulation on a motor prevents interconnection of windings and the winding to earth.  When looking at motors, it is important to understand how the insulation...

Understanding electric motor insulation & temperature

Anyone specifying or using electric motors should have a basic understanding how the insulation is related to temperature. Three classes of insulation...

Aluminium Windings - Dry Type Transformers

The other day I was talking to a colleague who is a building services consultant.  Despite regularly specifying dry-type/cast resin transformers he was...

Fault Calculations - Typical Equipment Parameters

A frequent problem in fault calculations is the obtaining of equipment parameters.  While it is always preferable to use the actual parameters of the equipment...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note