Introduction to Current Transformers 

By on February 8th, 2013

Image(2) 

High Voltage SF6 Current Transformers
Image Source: Courtesy Siemens
Current transformers (CTs) are used to convert high level currents to a smaller more reasonable level for use as inputs to protection relays and metering equipment.  Within electrical systems, current transformers are essential to ensure the correct functioning and control of equipment and for providing operational data and information.

This introductory note looks at the construction of current transformers and their specification.

There are two broad categories of current transformer:

Measuring CTs -  provide signals to meters and instruments

Protection CTs - provide signals to protective relays to enable correct operation under steady state and transient conditions.

Current transformers work on a similar principal to normal voltage transformers.  Two (or more) winding are wound round a magnetic core.  Current flowing in one winding [the primary] creates a magnetic field which drives current in the other winding [the secondary].  The ratio of the primary turns to the secondary turns provides the current scaling.

Example: a 600:5 ratio CT, for every turn on the primary would have 600 turns on the secondary.  A primary current of 600 A would cause 5 A to flow in the secondary. 

The physical construction of a current transformer can be as simple as one primary winding and one secondary winding on a core.  Quite often the construction is more complex with several secondary windings providing different protection and instrumentation needs. 

Specification of current transformers, typically considers the following:

  1. turns ratio - of the primary to secondary current (i.e. 1200/1)
  2. burden - the normal load in VA that the CT can supply
  3. accuracy factors -  the accuracy limits of  (both steady state and transient) 
  4. physical configuration - number of primary or secondary windings, size, shape, etc.

Safety: if a CT secondary is not connected to any load, then it should be short circuited.  If the secondary of the CT was left open during operation, then you would effectively have a transformer with one turn on the primary and many turns on the secondary.  Large and potentially dangerous voltages would be induced at the secondary terminals. 

Specification of Current Transformers

Current Transformer Accuracy

Accuracy of a current transformer is measured by the composite error.  This is defined as the difference between the ideal secondary RMS current and that of the actual secondary current.  It takes into account current errors, phase error and harmonic errors.

Current transformer intended for protection applications need to cover a wide range of current.  Then current value up to to which they will maintain accuracy is the 'accuracy limit current'.   The ratio of the accuracy limit current to the rated current is the 'accuracy limit factor'.

Measuring CT Accuracy Class

Accuracy for measuring current transformers is achieved by allocating an accuracy class to the CT.  For each class the standards define a maximum allowable current and phase displacement error for different load conditions.

± percentage
current/ratio error
± phase displacement error minutes
Current 5% 20% 50% 100% 120% 5% 20% 100% 120%                                                      
0.1 0.4 0.2   0.1 0.1 15 8 5 5 precision measurements
0.2 0.75 0.35   0.2 0.2 10 15 10 10 precision measurements
0.5 1.5 0.75   0.5 0.5 30 45 30 30 high grade kWhr meters
1 3 1.5   1.0 1.0 60 90 60 60 general measurements
3     3   3         general measurements
5     5   5         approximate measurements

Protection CT Accuracy Class

Protection current transformers are defined as either 5P or 10P.  For each of these the current error, phase displacement error and accuracy limit factor are defined

Class Current
Error
Displacement
Error
Accuracy
Limit Factor
5P ± 1% ± 60 minutes 5
10P ± 3% - 10


Class 'P' current transformers are generally used for overcurrent protection applications.  For more demanding applications, additional specification is required.  In this instance the maximum useful emf is often used - specified as the 'knee-point' of the excitation curve (point at which a further 10% rise in emf, requires a 50% increase in excitation current).

In addition to the above, other current transformer specifications are also in widespread use:

  • P - general purpose with accuracy defined by composite error and steady state primary current
  • TPS - low leakage with performance defined by secondary excitation and turns ratio error
  • TPX - defined by peak instantaneous error during specified transient duty
  • TPY - as per TPX, but remanent flux limited to 10%
  • TPZ - breaker failure application CT with large air gap

Name Plate Ratings

Image(3)
Typical Current
Transformer Nameplate
I
mage: Courtesy Schneider Electric
All current transformers should have a name plate attached.  The image shows and example of a typical nameplate for a current transformer with one primary and two secondary windings (click for a larger version of the image).

Sizing of Current Transformers

The correct sizing and specification of transformers is essential to ensure trouble free operation of protection and instrumentation systems.  There is a full electrical note dedicated to this at:

How to Size Current Transformers



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author


comments powered by Disqus



Latest Questions:

  1. help for electricity distribution (HTA) through underground cables (6 circuits)
  2. CT Secondary Rating
  3. Embedded system design
  4. PV system design - advice
  5. Power consumption of motor during starting
  6. Inspection of Cathodic Protection Transformer Rectifier
  7. Per Unit & Faults
  8. relay testing

most popular notesMost Popular Notes:







newsletter logo

Our Newsletter

Receive updates on new posts by email
down arrow

Solar Electricity Handbook - 2015 Edition: A simple, practical guide to solar energy - designing and installing solar PV systems.
Solar Electricity Handbook - 2015 Edition: ...
Michael Boxwell
Paperback - 204 pages
$17.09
The Ultimate Solar Power Design Guide: Less Theory More Practice (The Missing Guide For Proven Simple Fast Sizing Of Solar Electricity Systems For Your Home or Business)
The Ultimate Solar Power Design Guide: Less ...
Lacho Pop MSE, Dimi ...
Kindle Edition - 210 pages
Electric Power Distribution Engineering, Third Edition
Electric Power Distribution Engineering, ...
Turan Gonen
Hardcover - 1061 pages
$141.07
Do It Yourself 12 Volt Solar Power, 2nd Edition (Simple Living)
Do It Yourself 12 Volt Solar Power, 2nd ...
Michael Daniek
Paperback - 128 pages
$10.29
Power System Relaying
Power System Relaying
Stanley H. Horowitz, ...
Hardcover - 398 pages
$122.30
Photovoltaic Systems Engineering, Third Edition
Photovoltaic Systems Engineering, Third ...
Roger A. Messenger, ...
Hardcover - 528 pages
$101.53
Independent Energy Guide: Electrical Power for Home, Boat, & RV
Independent Energy Guide: Electrical Power ...
Kevin Jeffrey
Paperback - 280 pages
Solar PV Engineering and Installation: Preparation for the NABCEP PV Installation Professional Certification
Solar PV Engineering and Installation: ...
Sean White
Paperback - 248 pages
$31.26
Large-Scale Solar Power Systems: Construction and Economics (Sustainability Science and Engineering)
Large-Scale Solar Power Systems: ...
Dr Peter Gevorkian
Paperback - 400 pages
$49.99
Renewable and Efficient Electric Power Systems
Renewable and Efficient Electric Power ...
Gilbert M. Masters
Hardcover - 712 pages
$99.71
Solar Photovoltaic Basics: A Study Guide for the NABCEP Entry Level Exam
Solar Photovoltaic Basics: A Study Guide ...
Sean White
Paperback - 168 pages
$32.25
Power Quality: Problems and Mitigation Techniques
Power Quality: Problems and Mitigation ...
Bhim Singh, Ambrish ...
Hardcover - 600 pages
$100.83
Design of Smart Power Grid Renewable Energy Systems
Design of Smart Power Grid Renewable Energy ...
Ali Keyhani
Hardcover - 592 pages
$113.11
Energy Systems Engineering: Evaluation and Implementation, Second Edition
Energy Systems Engineering: Evaluation and ...
Francis Vanek, Louis ...
Hardcover - 672 pages
$60.99
How to Solar Power Your Home Everything You Need to Know Explained Simply (Back-To-Basics Conserving)
How to Solar Power Your Home Everything You ...
Martha Maeda
Paperback - 336 pages
$12.28
Submarine Power Cables: Design, Installation, Repair, Environmental Aspects (Power Systems)
Submarine Power Cables: Design, ...
Thomas Worzyk
Hardcover - 296 pages
$189.00
Electric Power Substations Engineering, Third Edition (Electrical Engineering Handbook)
Electric Power Substations Engineering, ...
Hardcover - 536 pages
$131.04
Smart Power Grids 2011 (Power Systems)
Smart Power Grids 2011 (Power Systems)
Paperback - 696 pages
$299.00
Power System Monitoring and Control
Power System Monitoring and Control
Hassan Bevrani, ...
Hardcover - 288 pages
$115.00
Power Electronics and Renewable Energy Systems: Proceedings of ICPERES 2014 (Lecture Notes in Electrical Engineering)
Power Electronics and Renewable Energy ...
Hardcover - 1607 pages
$211.07
Large-Scale Solar Power System Design (GreenSource Books): An Engineering Guide for Grid-Connected Solar Power Generation (McGraw-Hill's Greensource)
Large-Scale Solar Power System Design ...
Peter Gevorkian
Hardcover - 704 pages
$97.83
Integration of Distributed Generation in the Power System
Integration of Distributed Generation in ...
Math H. Bollen, ...
Hardcover - 528 pages
$106.62
Power Generation Handbook 2/E
Power Generation Handbook 2/E
Philip Kiameh
Kindle Edition - 736 pages
Convex Optimization of Power Systems
Convex Optimization of Power Systems
Joshua Adam Taylor
Hardcover - 209 pages
$76.97
Photovoltaics: Design and Installation Manual
Photovoltaics: Design and Installation ...
Solar Energy ...
Paperback - 336 pages
$33.79
Power Generation and the Environment
Power Generation and the Environment
Anco S. Blazev
Hardcover - 1333 pages
$191.18
Power Electronics for Modern Wind Turbines (Synthesis Lectures on Power Electronics)
Power Electronics for Modern Wind Turbines ...
Frede Blaabjerg, Zhe ...
Paperback - 120 pages
$35.00
Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids
Renewable Energy Integration: Practical ...
Lawrence E. Jones
Hardcover - 474 pages
$95.50
Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications
Power Electronics for Renewable Energy ...
Haitham Abu-Rub, ...
Hardcover - 826 pages
$163.90
Photovoltaic Design and Installation For Dummies
Photovoltaic Design and Installation For ...
Ryan Mayfield
Paperback - 384 pages
$15.46


Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note