Back to Basics - Ohm’s Law 

By on

The Basics

georgOhm
Georg Ohm
Electrical engineering has a multitude of laws and theorems.  It is fair to say the Ohm's Law is one of the more widely known; if not the most known. Developed in 1827 by Georg Ohm the law defines the relationship between voltage, current and resistance in an electric circuit.

Voltage is the force that is used to drive current around an electric circuit.  This can be provided by batteries, generators, etc., is measured in Volts (V) and denoted by the symbol V.  The voltage drives electric current around the circuit and this current does the useful work (heating an element in a light bulb for example).  Electric current is  typically described as the flow of electrons around a circuit, is measured in Amperes (A) and denoted by the symbol I.   Resistance is the opposition an electric circuit provides to the flow of current;  it limits the amount of current flowing when a voltage is applied.  Resistance is measured in Ohms (Ω) and denoted by the symbol R.

 

0243_OhmsLawR

 

The illustration shows a simple circuit consisting of a supply voltage V and resistance R around which flows a current I.  Ohm's law provides the relationship between these quantities:

b9feb13037d99819754b63a3a1b3bad7

That’s it - really straight forward and simple.   In words we can say the relationship between voltage and current in a circuit is a constant - the resistance.

The law can of course to be rearranged to give each parameter:

8b8cd7af2635ae91937229848104fe40

A little more complexity

The above is strictly true for direct current (dc) circuits.  In a dc circuit the current flows in one direction (positive to  negative) and is a constant value.  This changes in alternating current (ac) circuits - see the note article on Alternating Current Theory.  Because the current is constantly changing in an ac circuit, the magnetic fields are in motion and introduce additional constraints on the flow of current.  In addition to resistance we have a new parameter called reactance.  These combine into a quantity called impedance  which opposes the flow of electric current when a voltage is applied.

Like resistance the ac impedance is measured in Ohms (Ω) and is denoted by the symbol Z.   The good news is that impedance behaves like resistance and Ohm's Law still applies:

b64bd55d9e01dd318d456c53b349cebe

Note: when talking about dc circuits the quantities  (V, I and R) are scalar values.  In ac circuits these are vector quantities and the mathematics can be more complicated.

Even more complexity

To fully round off the discussion on Ohm's Law, it should be noted that it can be reformulated to apply in a more general sense to many physics problems, other than it’s pure application to dc or ac circuits.  This reformulation was carried out by Gustav Kirchhoff and is:

36e51a153d82a4f925daf6cd1a6a1aaa

In this representation J is the current density at some location (in a material or free space) and is measured in Ampere per metre squared.  E is the electric field in Volts per metre and c71da7f85beafa4c1806da1df216bda2 is the conductivity of the material in Siemens per meter.  Conductivity is the inverse of resistivity (Ohm meter).

There are other representations of Ohm's Law, but these are starting to transgress into the realm of theoretical interest only.  If you are interested in an application of the above formulae, you can look at the Earth Electrode Resistance note.

 

Being such an important and fundamental electrical law, most of us have had the experience learning and applying Ohm’s law.  If you have any tips or other Ohm’s law goodies to share, please add these below.

See Also



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Wiki Depreciation

We have had the Wiki with us for a long time now, but at last I have decided to say bye bye – more details on why below.

Always Use PPE

A lot of our members work in countries where PPE (personal protective equipment) is regulated or they work for companies/organizations which take employee...

Hazardous Areas – IEC and NEC/CEC Comparison

Depending where in the world you work, you are likely following one of two standards International Electrotechnical Commission (IEC) National...

Star-Delta Motor Starting - Performance

Many questions sent in to the site are in connection with motor starting and in particular star-delta.  For all but the simplest application, there is...

Motor Efficiency Classification

Electric motors are one of the most widely used items of electrical equipment. Improving motor efficiency benefits include, reduced power demand, lower...

Tip – Latitude and Longitude on Large Scale Plans

If you are working on a large plan, get the real coordinates [latitude, longitude] for two or more points and add them to the drawing. That way you can...

Periodic Electrical Installation Inspection – How Often?

How often installations are inspected is up to the owner of the installation, provided such durations do not exceed any regulatory maximums in force. ...

Thermoplastic and Thermosetting Insulation

While there are a vast array of cable insulation materials, these are often divided into two general types; Thermoplastic or Thermosetting. For example...

Capacitors - Energy Storage Application

Capacitors have numerous applications in electrical and electronic applications.  This note examines the use of capacitors to store electrical energy....

Medium Voltage Switchgear Room Design Guide

Many medium voltage (MV) indoor switchgear rooms  exist worldwide. The complexity of these rooms varies considerably depending on location, function and...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note