# DC Component of Asymmetrical Faults

By on

The image (reproduced from IEC 60909) shows a typical fault in an ac system.  From the illustration it can seen that there is an initial dc component (id.c.).  This initial dc component decays over time, eventually reaching zero.  Addition of the dc component to the symmetrical short circuit current gives the asymmetrical fault current.

The initial value of the dc component is dependant on the exact time within a cycle at which the fault takes place and the value of current at that time.

At the initiation of a fault, the current in any system inductance cannot instantly change from it’s value at fault inception to that of it’s steady state fault value.  To compensate for this, a dc component is introduced.  The dc component is equal to the value of the instantaneous ac current at fault inception and of opposite polarity.

Magnitude of the dc component is dependant on where in the cycle the fault inception takes place.  In the worse case, the initial dc offset will be √2 times the symmetrical short circuit value (RMS).

The dc component decays exponentially according to:

Where:

Ik’’ = symmetrical short circuit current (RMS) (kA)

τ = decay time constant (s)

t = time since fault inception (s)

The time constant τ, is dependant on the system reactance, X and resistance, R and at frequency f is given by:

### Application to Circuit Breakers

Application of the above knowledge to circuit breakers is worth mentioning (we have had a question asked on this recently).

For most distribution circuit breakers, a system time constant of dc decay  of 45 ms (X/R of 17 at 60Hz) is assumed. Using this assumption, in a distribution application, the dc component is nearly completely decayed after just a few cycles.

Where the system X/R ratio is greater, it will result in a larger time constant, slower decay of the dc component and additional stress on the circuit breaker.  In these instances the circuit breaker needs to be selected accordingly.

As an example, generator circuits typically have a higher X/R ratio and circuit breakers manufactured for this type off application would typically be designed for a system time constant of 133 ms (X/R ratio of 50 at 60 Hz).

The above is a brief introduction to the dc component of asymmetrical fault currents.  If you want to delve into more detail, the IEC 60909 standard “Short-circuit currents in three-phase a.c. systems” is a good starting point.

More interesting Notes:

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

#### View 4 Comments (old system)

1/16/2013 11:16 AM

How phase sequence disturbance occurs due to asymmetrical faults and what are its effects on system components and connected loads?.

• Steven says:
1/23/2013 8:38 AM

Difficult question to answer quickly and I’m also not sure what you mean by phase sequence disturbance.

Asymmetrical faults are by definition unbalanced and will affect each phase differently. Alternatively in a symmetrical fault, all three phases are balanced and each phase is affected equally. I don’t know if this will shed any light on your question. The following post also gives a little more detail, which may help you:

Fault Calculations - Introduction

At some stage in the future I do plan to add a few additional posts on fault calculations and will cover this in more depth.

1/23/2013 2:32 PM

Please provide sample current flow paths for +ve,-ve and zero sequence circuits for various kinds of faults(L-G/L-L/L-L-G/L-L-L) series connected involving
a)generator with solidly/resistance/inductance/peterson coil earthed neutral,
b)transformers with different vector groups and primary/secondary connections(star/delta) and earth
d)motors(syn/induction)
e)capacitor banks/reactors

3. HS says:
5/8/2013 3:19 PM

What is the worst case scenario of DC componenr percentage for 3MVA generator regardless the generator brand name/manufacturer

Comments are closed for this post:
• have a question or need help, please use our Questions Section
• spotted an error or have additional info that you think should be in this post, feel free to Contact Us

IEC 61439 - The Switchgear Standard

The new standard IEC 61439 replaces the old 60439. Compared to the old standard, the new 61439 is a more clearly defined and takes into account the assembly...

RLC Circuit, Resistor Power Loss - some Modelica experiments

Modelica is an open source (free) software language for modelling complex systems. Having never used it before, I thought I would download a development...

Variable Frequency Drive

Variable frequency drives are widely used to control the speed of ac motors.  This note looks at the mechanisms which enable drive units to control the...

9 power supply issues solved by using a UPS

Installation of a UPS can help in reducing problems due to issues with the power supply.  A lot of people relate this to nine key issues.  Depending on...

Fire Resistant and Fire Retardant Cables

Fire resistant and fire retardant cable sheaths are design to resist combustion and limit the propagation of flames. Low smokes cables have a sheath designed...

Earth Electrode Resistance

Earthing of electrical systems is essential for the correct functioning and the protecting of life and equipment in the event of faults.  The earth electrode...

Thomas Edison

American inventor Thomas Alva Edison was born in Milan, Ohio on February 11, 1847. He was the youngest of seven children and received little formal schooling...

Cold Fusion (or not?)

Recently I have seen a few interesting articles on viable cold fusion; the combining of atoms at room like temperatures to create boundless energy. Now...

ABB Technical Guides - Motor Operation

ABB has produced a range of technical guides that offer concise explanations of the major technologies and technical issues in low voltage AC drives. ...

Photovoltaic (PV) Panel - Performance Modelling

In an earlier note on the site [Photovoltaic (PV) - Electrical Calculations], the theory of solar (PV) cell calculations was introduced.  In particular...

## Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note