Lead Acid Batteries 

By on

Lead acid batteries are cost effect and reliable, making them suitable for many applications.This note examines topics of interest associated with the use of these batteries.

Discharge & Peukert's Law

The capacity of lead acid batteries decrease as the charging rate is increased. The action of a battery under these conditions is described by Peukert's law (first proposed by German scientist Peukert in 1897):

  t= C p I k

Where:
t = time to discharge the battery, in S
Cp = battery capacity at 1 A.h discharge rate

I = the actual discharge current, in h
k = Peukert constant (dependant on battery, typically 1.1 to .13)

 

Typically batteries are rated at a discharge time, T (in hours) and rated capacity C.  Perkert's law can then be expressed as:

  t=H ( C IH ) k

Peukert's law is good for reasonably constant rates of discharge.  For variable and non-linear rates, it starts to become inaccurate.  Replacing I with the average current during the discharge will give a better result, but it is still limited.   In this instance several methods can be used to improve accurately, including:

  • Rakhmatov and Vrudhula Model - looks at the actual diffusion processes within the battery to derive a more accurate analysis
  • Kinetic Battery Model - uses the chemical kinetics process as a basis for developing a discharge model
  • Stochastic Models - analysis the battery as a stochastic process
Typical accuracy using Peukert's law is in the order of 10% error.   Rakhmatov and Vrudhula models improve on this having errors around 5%, while Kinetic and Stochastic models perform even better with errors as low as 1 to 2%[1].

 

Effect of Temperature


Effect of temperature on battery life
 

Lead acid batteries are cost effective and reliable, making them suitable for many applications. One serious drawback compared to some other batteries (NiCad for example), is that lead acid batteries are affected by temperature. Lead acid batteries should only be used where they are installed in conditioned environments not subject to excessive temperatures.

Typically the rating for lead acid batteries is based on an ambient temperature of 25oC. For every 8oC above ambient during use, the life of the battery will be reduced by 50%. Ideally batteries should be operated at 25oC or less.

In addition to operation, storage of batteries waiting for use is also affected by temperature. If lead acid batteries are stored at elevated temperatures (particularly in a discharged condition), they will effectively become useless. If storing batteries, they should be in charged and stored at 25oC or less. Batteries will self discharge over time and need to be recharged periodically.

References

  • [1]  Battery Modeling, M.R. Jongerden and B.R. Haverkort - doc.utwente.nl/64556/1/BatteryRep4.pdf, accessed November 2012.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Operational Amplifier

The fundamental component of any analogue computer is the operational amplifier, or op amp. An operational amplifier (often called an op-amp,) is a high...

The dc resistance of conductors

This is the first of two posts on the resistance of conductors. In the next post I will look at the ac resistance, including skin effect and we deal with...

How to Check a Circuit is Dead

If you want to check a circuit is dead (not live), you should always use the three point method. First check a known live circuit, then check the dead...

DC Component of Asymmetrical Faults

The image (reproduced from IEC 60909) shows a typical fault in an ac system.  From the illustration it can seen that there is an initial dc component ...

Dielectric loss in cables

Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes...

Tech Topics/Application Notes - Siemens

There are a lot of interesting two page type notes on various medium voltage topics – switchgear, circuit breakers, bus systems etc. It is on the Siemens...

What does N+1 mean?

The term 'N+1' relates to redundancy and simply means that if you required 'N' items of equipment for something to work, you would have one additional...

What are you reading!

Reading is a bit of a hobby of mine and I"ve done a few off-topic posts in the past on this. Rather than continue doing the occasional post I thought ...

Back to basics - the Watt (or kW)

When thinking about watts (W) or kilowatt (kW = 1000 W) it can be useful too keep in mind the fundamental ideas behind the unit. Watt is not a pure electrical...

Three Phase Current - Simple Calculation

The calculation of current in a three phase system has been brought up on our site feedback and is a discussion I seem to get involved in every now and...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note