Lead Acid Batteries 

By on

Lead acid batteries are cost effect and reliable, making them suitable for many applications.This note examines topics of interest associated with the use of these batteries.

Discharge & Peukert's Law

The capacity of lead acid batteries decrease as the charging rate is increased. The action of a battery under these conditions is described by Peukert's law (first proposed by German scientist Peukert in 1897):

  t= C p I k

Where:
t = time to discharge the battery, in S
Cp = battery capacity at 1 A.h discharge rate

I = the actual discharge current, in h
k = Peukert constant (dependant on battery, typically 1.1 to .13)

 

Typically batteries are rated at a discharge time, T (in hours) and rated capacity C.  Perkert's law can then be expressed as:

  t=H ( C IH ) k

Peukert's law is good for reasonably constant rates of discharge.  For variable and non-linear rates, it starts to become inaccurate.  Replacing I with the average current during the discharge will give a better result, but it is still limited.   In this instance several methods can be used to improve accurately, including:

  • Rakhmatov and Vrudhula Model - looks at the actual diffusion processes within the battery to derive a more accurate analysis
  • Kinetic Battery Model - uses the chemical kinetics process as a basis for developing a discharge model
  • Stochastic Models - analysis the battery as a stochastic process
Typical accuracy using Peukert's law is in the order of 10% error.   Rakhmatov and Vrudhula models improve on this having errors around 5%, while Kinetic and Stochastic models perform even better with errors as low as 1 to 2%[1].

 

Effect of Temperature


Effect of temperature on battery life
 

Lead acid batteries are cost effective and reliable, making them suitable for many applications. One serious drawback compared to some other batteries (NiCad for example), is that lead acid batteries are affected by temperature. Lead acid batteries should only be used where they are installed in conditioned environments not subject to excessive temperatures.

Typically the rating for lead acid batteries is based on an ambient temperature of 25oC. For every 8oC above ambient during use, the life of the battery will be reduced by 50%. Ideally batteries should be operated at 25oC or less.

In addition to operation, storage of batteries waiting for use is also affected by temperature. If lead acid batteries are stored at elevated temperatures (particularly in a discharged condition), they will effectively become useless. If storing batteries, they should be in charged and stored at 25oC or less. Batteries will self discharge over time and need to be recharged periodically.

References

  • [1]  Battery Modeling, M.R. Jongerden and B.R. Haverkort - doc.utwente.nl/64556/1/BatteryRep4.pdf, accessed November 2012.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Electromagnetic Fields - Exposure Limits

Exposure to time varying magnetic fields, from power frequencies to the gigahertz range can have harmful consequences.  A lot of research has been conducted...

Why a Sine Wave?

I received this question by email a few weeks. First thoughts was that it is a product of the mathematics of rotating a straight conductor in a magnetic...

How to Size Current Transformers

The correct sizing of current transformers is required to ensure satisfactory operation of measuring instruments and protection relays. Several methods...

Network Theory – Introduction and Review

In electrical engineering, Network Theory is the study of how to solve circuit problems. By analyzing circuits, the engineer looks to determine the various...

Medium Voltage Switchgear Room Design Guide

Many medium voltage (MV) indoor switchgear rooms  exist worldwide. The complexity of these rooms varies considerably depending on location, function and...

Motor Insulation

Insulation on a motor prevents interconnection of windings and the winding to earth.  When looking at motors, it is important to understand how the insulation...

Thomas Edison

American inventor Thomas Alva Edison was born in Milan, Ohio on February 11, 1847. He was the youngest of seven children and received little formal schooling...

Generator Sizing & Operation Limits

When selecting a generator, there are inherent limits on the active and reactive power which can be delivered. Generators are normally sized for a certain...

Maximum Demand for Buildings

Estimating maximum demand is a topic frequently discussed. Working out how much power to allow for a building can be very subjective . Allowing too much...

Robotics - Home Innovations

We have a sister note to this (Robots - Interesting Video), in which I have posted some videos of interesting robots developed by commercial corporations...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note