Lead Acid Batteries 

By on

Lead acid batteries are cost effect and reliable, making them suitable for many applications.This note examines topics of interest associated with the use of these batteries.

Discharge & Peukert's Law

The capacity of lead acid batteries decrease as the charging rate is increased. The action of a battery under these conditions is described by Peukert's law (first proposed by German scientist Peukert in 1897):

  t= C p I k

Where:
t = time to discharge the battery, in S
Cp = battery capacity at 1 A.h discharge rate

I = the actual discharge current, in h
k = Peukert constant (dependant on battery, typically 1.1 to .13)

 

Typically batteries are rated at a discharge time, T (in hours) and rated capacity C.  Perkert's law can then be expressed as:

  t=H ( C IH ) k

Peukert's law is good for reasonably constant rates of discharge.  For variable and non-linear rates, it starts to become inaccurate.  Replacing I with the average current during the discharge will give a better result, but it is still limited.   In this instance several methods can be used to improve accurately, including:

  • Rakhmatov and Vrudhula Model - looks at the actual diffusion processes within the battery to derive a more accurate analysis
  • Kinetic Battery Model - uses the chemical kinetics process as a basis for developing a discharge model
  • Stochastic Models - analysis the battery as a stochastic process
Typical accuracy using Peukert's law is in the order of 10% error.   Rakhmatov and Vrudhula models improve on this having errors around 5%, while Kinetic and Stochastic models perform even better with errors as low as 1 to 2%[1].

 

Effect of Temperature


Effect of temperature on battery life
 

Lead acid batteries are cost effective and reliable, making them suitable for many applications. One serious drawback compared to some other batteries (NiCad for example), is that lead acid batteries are affected by temperature. Lead acid batteries should only be used where they are installed in conditioned environments not subject to excessive temperatures.

Typically the rating for lead acid batteries is based on an ambient temperature of 25oC. For every 8oC above ambient during use, the life of the battery will be reduced by 50%. Ideally batteries should be operated at 25oC or less.

In addition to operation, storage of batteries waiting for use is also affected by temperature. If lead acid batteries are stored at elevated temperatures (particularly in a discharged condition), they will effectively become useless. If storing batteries, they should be in charged and stored at 25oC or less. Batteries will self discharge over time and need to be recharged periodically.

References

  • [1]  Battery Modeling, M.R. Jongerden and B.R. Haverkort - doc.utwente.nl/64556/1/BatteryRep4.pdf, accessed November 2012.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



ABB Technical Guides - Motor Operation

ABB has produced a range of technical guides that offer concise explanations of the major technologies and technical issues in low voltage AC drives. ...

Voltage Levels to IEC 60038

The standard aims to consolidate AC and traction voltages within the industry and defines the following bands: band 1 - A.C. systems 100 V to 1...

ANSI (IEEE) Protective Device Numbering

The widely used United Sates standard ANSI/IEEE C37.2 'Electrical Power System Device Function Numbers, Acronyms, and Contact Designations' deals with...

Photovoltaic (PV) Panel - Performance Modelling

In an earlier note on the site [Photovoltaic (PV) - Electrical Calculations], the theory of solar (PV) cell calculations was introduced.  In particular...

Understanding LV Circuit Breaker Fault Ratings

I think this post is going to be helpful to several of our readers. While the IEC low voltage circuit breaker Standard [IEC 60947-2, Low voltage switchgear...

Nikola Tesla

Nikola Tesla was born exactly at midnight on July 10, 1856 in the tiny village of Smiljan, Lika in Croatia. In his late teens, Tesla left the village to...

New Mail Chimp

We've been sending out Newsletters on a regular basis for a few weeks now. To do this we have been using Google's Feedburner service. While Feedburner...

What happened to the cable notes?

If you are wondering what happened to our cable notes, the short answer is that we have moved them to myCableEngineering.com.  The "Knowledge Base" at...

Generator Sizing & Operation Limits

When selecting a generator, there are inherent limits on the active and reactive power which can be delivered. Generators are normally sized for a certain...

Calculating Cable Fault Ratings

When selecting a cable, the performance of the cable under fault conditions is an important consideration. It is important that calculations be carried...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note