Difference Between Live and Dead Tank Circuit Breakers 

By on


Siemens Dead Tank Circuit Breaker
A quick post in connection with an email question:

Live Tank -  the circuit breaker the switching unit is located in an insulator bushing which is live at line voltage (or some voltage above ground). Live Tank circuit breakers are cheaper than dead tank and require less space.

Dead Tank -  the switching unit is located within a metallic container which is kept a earth potential.  As the incoming/outgoing conductors are taken through insulated bushings, it is possible to place current transformers on these (with a Live Tank arrangement this is not possible and separate CTs are required). 

The terms Live and Dead Tank normally only apply to high voltage circuit breakers



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus

  1. tang's avatar tang says:
    8/23/2012 8:15 AM

    What is the ground clearance for dead tank CT?

    • Steven's avatar Steven says:
      8/26/2012 12:17 PM

      With a dead tank circuit breaker, the CT primary side is still isolated, so I'm not sure about why you are worried with ground clearance.


Comments are closed for this post:
  • have a question or need help, please use our Questions Section
  • spotted an error or have additional info that you think should be in this post, feel free to Contact Us



Back to basics - the Watt (or kW)

When thinking about watts (W) or kilowatt (kW = 1000 W) it can be useful too keep in mind the fundamental ideas behind the unit. Watt is not a pure electrical...

Capacitor Theory

Capacitors are widely used in electrical engineering for functions such as energy storage, power factor correction, voltage compensation and many others...

DC Motor Operation

Coils of wire on the rotor carry a d.c. current which generates a magnetic field. A stator magnetic field is created using either permanent magnets or...

Periodic Electrical Installation Inspection – What to Inspect?

This is the second post in a series of two on periodic electrical inspections. In the first post, I discussed how often inspections should be carried out...

Cable Sizing Tool

Our cable sizing tool is one of the more popular tools on the site.  The tool enables cables to be sized in compliance with BS 7671 (the IEE Wiring Regulations...

Why use catalogues

I'm a fan of using manufacturers catalogues. There are two main reasons for this. Firstly, if your involved in the purchase of equipment, you will likely...

110 or 230 Volts

I've been considering a blog on the 110 or 230 Volt issue for a while.  While browsing the Internet I came across a great summary by Borat over at  engineering...

Dielectric loss in cables

Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes...

RLC Circuit, Resistor Power Loss - some Modelica experiments

Modelica is an open source (free) software language for modelling complex systems. Having never used it before, I thought I would download a development...

Software Usage Guidelines

Using software in our  work is essential for most of us and we are becoming even more dependant on it's use.  While software is a great asset, many times...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note