Operational Amplifier 

By on

The fundamental component of any analogue computer is the operational amplifier, or op amp. An operational amplifier (often called an op-amp,) is a high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output.

Op-amps are among the most widely used electronic devices today, being used in a vast array of consumer, industrial, and scientific devices. Many standard IC op-amps cost only a few cents in moderate production volume; however some integrated or hybrid operational amplifiers with special performance specifications may cost significantly more.


Basic Op Amp CircuitThe amplifier's differential inputs consist of a V+ input and a V input, and ideally the op amp amplifies only the difference in [[voltage]] between the two (called the differential input voltage). The output voltage of the op-amp is given by the equation:

myElectrical Equation 

where V+ is the voltage at the non-inverting terminal, V- is the voltage at the inverting terminal and AOL is the open-loop gain of the amplifier.

The magnitude of AOL is typically very large (seldom less than a million) and even a quite small differential input voltage will result in amplifier saturation.

If linear operation is desired, negative feedback must be used and is usually achieved by applying a portion of the output voltage to the inverting input. The feedback enables the output of the amplifier to keep the inputs at or near the same voltage so that saturation does not occur.

Idea Op Amp

An ideal op-amp is would have the following properties. In practice, none of these ideals can be realized, and various shortcomings and compromises have to be accepted.

  • Infinite open-loop gain
  • Infinite voltage range available at the output
  • Infinite bandwidth
  • Infinite input impedance
  • Zero input current
  • Zero input offset voltage
  • Infinite slew rate
  • Zero output impedance
  • Zero noise
  • Infinite common-mode rejection ratio (CMRR)
  • Infinite power supply rejection ratio


Op-amps are often used in electronic circuit design. The use of op-amps as circuit blocks is generally much easier and clearer than specifying all their individual circuit elements ([[transistors]],[[resistor| resistors]], etc.).

Basic Op 'Amp' Circuits


Circuit Transfer Function
Inverting amplifier
myElectrical Equation
Non-inverting amplifier
myElectrical Equation
Differential input amplifier

myElectrical Equation


myElectrical Equation

Adding, Subtracting & Scaling
myElectrical Equation
Voltage follower
myElectrical Equation
Current amplifier

myElectrical Equation
Integrating amplifier
myElectrical Equation
Differentiating amplifier

myElectrical Equation


Voltage Gain of Op-amps

Op Amp Gain
Op-amp Gain

Real op-amp such as the commonly available uA741, do not have infinite gain or bandwidth but have a typical "Open Loop Gain". This is defined as the amplifiers output amplification without any external feedback signals connected to it and for a typical operational amplifier is 105 to 106 at DC (zero Hz). This output gain decreases linearly with frequency down to "Unity Gain" or 1, at about 1MHz.

Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus

  1. on ap's avatar on ap says:
    10/26/2013 4:59 PM

    I like this page so much. All imformation here help for my work

Comments are closed for this post:
  • have a question or need help, please use our Questions Section
  • spotted an error or have additional info that you think should be in this post, feel free to Contact Us

What is a rectifier transformer?

I've recently come across this question a couple times browsing the internet. Decided to give a quick answer here. A rectifier transformer is a transformer...

Capacitor Theory

Capacitors are widely used in electrical engineering for functions such as energy storage, power factor correction, voltage compensation and many others...

New Mail Chimp

We've been sending out Newsletters on a regular basis for a few weeks now. To do this we have been using Google's Feedburner service. While Feedburner...

Motor Starting - Introduction

Motor starting and its associated problems are well-known to many people who have worked on large industrial processes. However, these things are, of course...

Motor Insulation

Insulation on a motor prevents interconnection of windings and the winding to earth.  When looking at motors, it is important to understand how the insulation...

Electromechanical Relays

Electromechanical relays have been the traditional backbone of electrical protection systems.  While over recent years these have been replaced by microprocessor...

Occam's Razor

I was reminded of Occam's Razor while reading a book. It's quite a simple principal of logic which has stood the test of time and is accepted as central...

IEEE Winds of Change

IEEE TV has a part series of videos on wind power and it's implication. For a really good overview to the technologies and issues around wind power, these...

110 or 230 Volts

I've been considering a blog on the 110 or 230 Volt issue for a while.  While browsing the Internet I came across a great summary by Borat over at  engineering...

Power Transformers - An Introduction

One of the fundamental requirements of an alternating current distribution systems it to have the ability to change the magnitude of voltages.  It is more...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note