Operational Amplifier 

By on

The fundamental component of any analogue computer is the operational amplifier, or op amp. An operational amplifier (often called an op-amp,) is a high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output.

Op-amps are among the most widely used electronic devices today, being used in a vast array of consumer, industrial, and scientific devices. Many standard IC op-amps cost only a few cents in moderate production volume; however some integrated or hybrid operational amplifiers with special performance specifications may cost significantly more.

Operation

Basic Op Amp CircuitThe amplifier's differential inputs consist of a V+ input and a V input, and ideally the op amp amplifies only the difference in [[voltage]] between the two (called the differential input voltage). The output voltage of the op-amp is given by the equation:

myElectrical Equation 

where V+ is the voltage at the non-inverting terminal, V- is the voltage at the inverting terminal and AOL is the open-loop gain of the amplifier.

The magnitude of AOL is typically very large (seldom less than a million) and even a quite small differential input voltage will result in amplifier saturation.

If linear operation is desired, negative feedback must be used and is usually achieved by applying a portion of the output voltage to the inverting input. The feedback enables the output of the amplifier to keep the inputs at or near the same voltage so that saturation does not occur.

Idea Op Amp

An ideal op-amp is would have the following properties. In practice, none of these ideals can be realized, and various shortcomings and compromises have to be accepted.

  • Infinite open-loop gain
  • Infinite voltage range available at the output
  • Infinite bandwidth
  • Infinite input impedance
  • Zero input current
  • Zero input offset voltage
  • Infinite slew rate
  • Zero output impedance
  • Zero noise
  • Infinite common-mode rejection ratio (CMRR)
  • Infinite power supply rejection ratio

Applications

Op-amps are often used in electronic circuit design. The use of op-amps as circuit blocks is generally much easier and clearer than specifying all their individual circuit elements ([[transistors]],[[resistor| resistors]], etc.).

Basic Op 'Amp' Circuits

 

Circuit Transfer Function
Inverting amplifier
myElectrical Equation
Non-inverting amplifier
myElectrical Equation
Differential input amplifier

myElectrical Equation

with

myElectrical Equation

Adding, Subtracting & Scaling
myElectrical Equation
Voltage follower
myElectrical Equation
Current amplifier

myElectrical Equation
Integrating amplifier
myElectrical Equation
Differentiating amplifier

myElectrical Equation

 

Voltage Gain of Op-amps

Op Amp Gain
Op-amp Gain

Real op-amp such as the commonly available uA741, do not have infinite gain or bandwidth but have a typical "Open Loop Gain". This is defined as the amplifiers output amplification without any external feedback signals connected to it and for a typical operational amplifier is 105 to 106 at DC (zero Hz). This output gain decreases linearly with frequency down to "Unity Gain" or 1, at about 1MHz.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus

  1. on ap's avatar on ap says:
    10/26/2013 4:59 PM

    I like this page so much. All imformation here help for my work


Comments are closed for this post:
  • have a question or need help, please use our Questions Section
  • spotted an error or have additional info that you think should be in this post, feel free to Contact Us



How to Size Power Cable Duct

Some colleagues had an issue earlier in the week on sizing conduits to be cast in concrete for some power cables . It became clear that none of us had...

Smarter Electrical Distribution

The other day I came across an article in Technology Review on the development of a smart transformer. A professor at North Carolina State University is...

Inductance

When current flows within a wire, a magnetic field is created. The potion of this magnetic field perpendicular to the wire is called the magnetic flux...

Generator Sizing & Operation Limits

When selecting a generator, there are inherent limits on the active and reactive power which can be delivered. Generators are normally sized for a certain...

Paternoster Lifts

These lifts were first built in 1884 by J. E. Hall and called a paternoster ("Our Father", the first two words of the Lord's Prayer in Latin) due to its...

Low Voltage Fault Tables

The following tables provide quick order of magnitude fault levels for a a range of typical low voltage situations.

A mechanical engineering paper, some history and memories

I was digging in my bookshelf and came across the 80th Anniversary Association of Mine Resident Engineers, Papers and Discussions Commemorative Edition...

Standard Cable & Wire Sizes

IEC 60228 is the International Electrotechnical Commission's international standard on conductors of insulated cables. Among other things, it defines a...

Post Authorship

In 2011, with the introduction of it’s Panda search ranking algorithms, Google introduced tools for determining the original author of posts.  The intention...

Fault Calculations - Introduction

Fault calculations are one of the most common types of calculation carried out during the design and analysis of electrical systems. These calculations...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note