Equipment Verification (to IEC Standards) 

By on


KEMA High Power Laboratory, Netherlands
One of the requirements to ensuring that everything works is to have equipment selected, manufactured and verified [tested] to IEC standards. Not all equipment out there meets this requirements. It is the responsibility of the engineers in the procurement and construction process to ensure that only equipment meeting these requirements is used.

If your involved in this activity you most likely already know what to do and have your own methods for approaching this issue. If your new to this or have just been tasked with verifying equipment meets requirements, hopefully this post will get you started.

Ensuring compliance is not complicated, but there are a couple of things you aware of.

The first is the requirements themselves. Project specifications will often say equipment needs to be manufactured to xyz standard and often stop at that. To fully understand the requirements you need to know what is in xyz standard – which means reading it. The IEC standards in general are pretty good as giving performance requirements and listing the necessary testing and verification activities which need to be carried out. By reading the standard you can gain a really good understanding of what is required to show than an item of equipment will meet the standard.

The second thing to look at is ensuring that the equipment actually does meet the standard. In principal this is achieved by confirming that the equipment has undergone the necessary testing and verification as required by the standard. Generally this falls into two categories:

  1. Type testing and design verification – which is carried out on samples of the product (not necessarily the items to be sold to the customer). This level of testing is generally expensive and is carried out to demonstrate that the general concepts and arrangements of equipment meets the performance requirements of standard.
  2. Routine testing – carried out and each item of equipment which is produces and sold to the customer. This often takes the form of testing at the factory and site testing. It is designed to give confidence that each item of equipment is working as anticipated and that there have been no manufacturing problems introduced.

To confirm that type testing and design verification has been achieved, results of testing from independent third party laboratories are normally accepted. The IEC maintains a list of laboratories (by country) which have been approved to certified to approve compliance with standards. It is advisable to insist on only using certificates from approved laboratories:

Routine testing will cover items as required by the standard and will often involve additional testing as required by the project. This is normally carried out by the manufacturer, but can be a third party if required by the project. These may or may not be witnessed by the project engineers (although usually will be in the case of important equipment).

That’s all there is to it. In practice there is a lot of equipment which does not meet standard out there and pushers of this equipment will be tricky in trying to convince you that it is ok. By following the above, you should be in a position to spot equipment which does not meet standard and ensure that your project is supplied only with reputable equipment.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Maximum Demand for Buildings

Estimating maximum demand is a topic frequently discussed. Working out how much power to allow for a building can be very subjective . Allowing too much...

Electromagnetic Compatibility (EMC)

Electromagnetic compatibility (EMC) is the study of coordinating electromagnetic fields give off equipment, with the withstand (compatibility) of other...

Cost Performance and Time

Often us engineers get so bogged down in equations, using software, producing drawings and writing specifications that this becomes the sole focus.   ...

110 or 230 Volts

I've been considering a blog on the 110 or 230 Volt issue for a while.  While browsing the Internet I came across a great summary by Borat over at  engineering...

Earth Electrode Resistance

Earthing of electrical systems is essential for the correct functioning and the protecting of life and equipment in the event of faults.  The earth electrode...

UPS Sizing - Rules of Thumb

It wasn't so long ago I was telling someone that I don't use rules of thumb as most things are easily calculated anyhow.   As it turns out I last week...

Why a Sine Wave?

I received this question by email a few weeks. First thoughts was that it is a product of the mathematics of rotating a straight conductor in a magnetic...

myElectrical - Cable Sizing Tool Upgrade

Our IEE cable sizing was wrote a few years ago and had become rough around the edges. I thought it was time to give the tool a service. Unfortunately when...

Fault Calculation - Per Unit System

Per unit fault calculations is a method whereby system impedances and quantities are normalised across different voltage levels to a common base.  By removing...

Operational Amplifier

The fundamental component of any analogue computer is the operational amplifier, or op amp. An operational amplifier (often called an op-amp,) is a high...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note