Smarter Electrical Distribution 

By on

The other day I came across an article in Technology Review on the development of a smart transformer. A professor at North Carolina State University is developing a transistor based transformer capable of coping with both dc and ac and of directing power to where it is required. His idea is to shuffle power around the grid in the same way that the internet intelligently moves data around.

The interesting thing from this is that people are starting to address the way we move power around. There is a lot of talk about renewable energy such as solar and wind, but less talk in utilizing this on a large scale. One of the problems with renewable generation is that it is not continuous; you need the sun to be out for solar power to work. Contrast this with our consumption habits of wanting power available on demand twenty four hours a day. As reliance on renewable energy continues to increase this mismatch between generation and demand is going to get worse.

While the smart transformer may or may not be a component in future smarter distribution systems it is obvious that how we utilize power will need to change.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



DC Component of Asymmetrical Faults

The image (reproduced from IEC 60909) shows a typical fault in an ac system.  From the illustration it can seen that there is an initial dc component ...

Electromagnetic Fields - Exposure Limits

Exposure to time varying magnetic fields, from power frequencies to the gigahertz range can have harmful consequences.  A lot of research has been conducted...

IEC 61439 - The Switchgear Standard

The new standard IEC 61439 replaces the old 60439. Compared to the old standard, the new 61439 is a more clearly defined and takes into account the assembly...

Introduction to Cathodic Protection

If two dissimilar metals are touching and an external conducting path exists, corrosion of one the metals can take place.  Moisture or other materials...

Maxwell's Equations - Gauss's Electric Field Law

Gauss's Electrical law defines the relation between charge ("Positive" & "Negative") and electric field.  The law was initially formulated by Carl Friedrich...

Smarter Electrical Distribution

The other day I came across an article in Technology Review on the development of a smart transformer. A professor at North Carolina State University is...

A mechanical engineering paper, some history and memories

I was digging in my bookshelf and came across the 80th Anniversary Association of Mine Resident Engineers, Papers and Discussions Commemorative Edition...

Fault Calculation - Symmetrical Components

For unbalance conditions the calculation of fault currents is more complex. One method of dealing with this is symmetrical components. Using symmetrical...

Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

How to Size Power Cable Duct

Some colleagues had an issue earlier in the week on sizing conduits to be cast in concrete for some power cables . It became clear that none of us had...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note