Capacitors - Energy Storage Application 

By on

sitarsUnit
Siemens, Sitars ESM 125 Water
Cooled Energy Storage Module

Key Specifications:

  • Rated Voltage: 120 ... 125 V d.c.
  • Rated Capacitance: 63 F
  • Usable Energy Storage: 105 Wh
  • Usable Current Range: 150 ... 170 A d.c.
  • Maximum Series Module: 8
  • Operational Cycles: 1,000,000

Note: if disconnected then the energy will self discharge due to internal resistance in approximately four to five days.

Capacitors have numerous applications in electrical and electronic applications.  This note examines the use of capacitors to store electrical energy.  The sidebar shows details of a typical commercially available energy storage module.

Advantages & Disadvantages

In deciding the appropriateness of using capacitors as an energy storage medium, it is worth looking at some of the advantages and advantages:

Advantages:

  • can charge and accumulate energy quickly
  • can deliver the stored energy quickly
  • losses are small compared to other storage medium
  • long service life and low (or no) maintenance

Disadvantages:

  • low energy capacity compared to batteries
  • limited energy storage per dollar cost
  • stored energy will eventually deplete due to internal losses

Note: some interesting schemes are being developed to overcome some of the disadvantages. 

For example, Shanghai is experimenting with super capacitor buses, called the Capabus. Siemens is developing a hybrid storage utilising both capacitors and batteries to be used in the powering of light rail systems. In both these applications, capacitors are quickly charged at stops or along the route by connecting to overhead charging points.

Energy Storage

Double Layer Capacitors

Many energy storage modules will use electric double layer capacitors, often referred to as super capacitors.

Super capacitors use a liquid electrolyte and charcoal to form what is known as an electrical double layer.  This greatly increases the capacitance. Capacitors with large Farad rating and small size can be obtained.

Note: due to having a large internal resistance, double layer capacitors are not suitable for a.c. circuits.

For anyone not familiar with capacitor theory or needing a quick refresher, please review the Capacitor Theory note.

The amount of energy (in joules) stored by a capacitor is determined by the capacitance (C) and voltage (V) and is given by:

  1 2 C V 2

The greater the capacitance or the voltage, the more energy it can store. 

When connecting capacitors in series, the total capacitance reduces but the voltage rating increases.  Connecting in parallel keeps the voltage rating the same but increases the total capacitance.  Either way the total energy storage of any combination is simply the sum of the storage capacity of each individual capacitor. 

Tip: one application of capacitors as part of a hybrid (capacitor/battery) energy system, is that they can help prolong battery life.   

Energy Stored Example

Consider the above energy storage module (63 F at 125 V).  What is the stored energy of one module by itself and then of two modules connected in series.

The energy of one module is:

  1 2 ×63× 125 2 =0.5 MJ

by connecting two modules in series (doubling the voltage, halving the capacitance), the energy storage can be doubled:

  1 2 ×31.5× 250 2 =1.0 MJ

Safety: capacitors store energy and will remain charged when disconnected from any supply.  Before working on any capacitive systems which have been isolated from the power supply, be careful to take all necessary steps to ensure the capacitors are fully discharged.

Hybrid Energy Systems

Hybrid energy systems (HES) employ capacitors in conjunction with batteries or to benefit from the advantages of both technologies while minimizing the disadvantages. 

Within a hybrid energy system the capacitors can charge and deliver energy more quickly, thereby reducing strenuous duties on the batteries.  The batteries can achieve greater energy densities and provide for longer running duration. 

The use of this type of hybrid energy systems is becoming more popular, particularly in transportation applications.

Hopefully,  everyone now has a better understanding of using capacitor for energy storage.  If anyone still has questions or any comments, please post below.

See Also



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Maxwell's Equations - Introduction

Maxwell's Equations are a set of fundamental relationships, which govern how electric and magnetic fields interact. The equations explain how these fields...

IEC 61439 - The Switchgear Standard

The new standard IEC 61439 replaces the old 60439. Compared to the old standard, the new 61439 is a more clearly defined and takes into account the assembly...

A mechanical engineering paper, some history and memories

I was digging in my bookshelf and came across the 80th Anniversary Association of Mine Resident Engineers, Papers and Discussions Commemorative Edition...

Why is electricity so hard to understand?

It's been a busy few months on different projects or busy couple of decades depending on how I look at it. I can say that on the odd (frequent) occasion...

Induction Motor Equivalent Circuit

Induction motors are frequently used in both industrial and domestic applications.  Within the induction motor, an electrical current in the rotor is induced...

Understanding LV Circuit Breaker Fault Ratings

I think this post is going to be helpful to several of our readers. While the IEC low voltage circuit breaker Standard [IEC 60947-2, Low voltage switchgear...

Magicians of Engineering

The other day I was reading 'Night of the New Magicians' by Mary Pope Osborn with my son.  The story is about a young boy and girl who travel back in time...

IEC 61439 Verification Methods

The (relatively new) switchgear and control gear standard, IEC 61439 'Low-voltage switchgear and controlgear assemblies' has three methods which can be...

GE's Shingijutsu Factory

GE's latest thinking on product manufacturing is he Shingijutsu philosophy or Lean production system. They have started applying this at the Louisville...

Meeting room of the future

The IET site has a video of a visit showing of a high tech meeting room developed at Napier University in Edinburgh. It a good demonstration of innovative...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note