Railway Electrification Voltages 

By on

This post is quick introduction and overview to different railway electrification voltages used in answer to a question sent in via email.

While there are numerous voltages in use through out the world (many dating back a hundred years), fortunately the number of voltages levels in common/widespread use is relatively few. To keep the post short, I will only list the more common voltages.

Both dc and ac systems are used. Direct current systems are generally used for metro lines and relatively commuter /regional systems up to around 100 km long. For longer and more heavily loaded routes, alternating current is generally used.

Direct Current (dc) Voltages

Most commonly used are 600/650 and 750 V. These are used world wide on mass transit, commuter and tram lines. Voltage is supplied to the train using a third rail or overhead lines.

1.5 kV (typically supplied overhead) is used in Europe, the US, China, Australia and a several other countries. Less common are 3 kV systems, but these can still be found in operation in several countries.

Alternating Current (ac) Voltages

25 kV (50 Hz or 60 Hz) ac systems have achieved widespread use in many countries, including the UK, US, large parts of Europe, Asia, Africa and the Americas. Additionally 15 kV (16 2/3 Hz) networks still have widespread use within Europe and the US still has several 12 kV (25 Hz) lines.

The US, South Africa and Canada also operate 50 kV systems in operation (typically used on systems for mine haulage).

It would be fair to say that 25 kV has become the international standard. This is covered by two standards:

  • BS EN 50163 - Railway applications. Supply voltages of traction systems
  • IEC 60850 - Railway Applications. Supply voltages of traction systems

Alternating current systems invariably are supplied by overhead lines. It is worth noting that most implementations are single phase (due to problems with picking up three phases from the overhead lines).  

That's it; a quick summary. It doesn't cover every voltage, but hopefully will give everyone a general understanding of the most common voltages used.

If anyone has anything to add or want to give a few more details, please do so below.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Electromechanical Relays

Electromechanical relays have been the traditional backbone of electrical protection systems.  While over recent years these have been replaced by microprocessor...

What does N+1 mean?

The term 'N+1' relates to redundancy and simply means that if you required 'N' items of equipment for something to work, you would have one additional...

EU Code of Conduct on Data Centres - Best Practices

The European Union is implementing a voluntary code of practice for participants with the aim of improving the overall efficiency of data centres. As part...

Software Usage Guidelines

Using software in our  work is essential for most of us and we are becoming even more dependant on it's use.  While software is a great asset, many times...

What happened to the cable notes?

If you are wondering what happened to our cable notes, the short answer is that we have moved them to myCableEngineering.com.  The "Knowledge Base" at...

Understanding Motor Duty Rating

One of the comments on my Motor Starting Series was asking for something on duty cycles. Here it is. As a purchaser of a motor, you have responsibility...

Calculating Cable Fault Ratings

When selecting a cable, the performance of the cable under fault conditions is an important consideration. It is important that calculations be carried...

Photovoltaic (PV) Panel - Performance Modelling

In an earlier note on the site [Photovoltaic (PV) - Electrical Calculations], the theory of solar (PV) cell calculations was introduced.  In particular...

Generation of a Sine Wave

A fundamental concept behind the operation of alternating current systems is that voltage and current waveforms will be sinusoidal – a Sine Wave. This...

IEC 60287 Current Capacity of Cables - An Introduction

IEC 60287 "Calculation of the continuous current rating of cables (100% load factor)" is the International Standard which defines the procedures and equations...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note