Railway Electrification Voltages 

By on

This post is quick introduction and overview to different railway electrification voltages used in answer to a question sent in via email.

While there are numerous voltages in use through out the world (many dating back a hundred years), fortunately the number of voltages levels in common/widespread use is relatively few. To keep the post short, I will only list the more common voltages.

Both dc and ac systems are used. Direct current systems are generally used for metro lines and relatively commuter /regional systems up to around 100 km long. For longer and more heavily loaded routes, alternating current is generally used.

Direct Current (dc) Voltages

Most commonly used are 600/650 and 750 V. These are used world wide on mass transit, commuter and tram lines. Voltage is supplied to the train using a third rail or overhead lines.

1.5 kV (typically supplied overhead) is used in Europe, the US, China, Australia and a several other countries. Less common are 3 kV systems, but these can still be found in operation in several countries.

Alternating Current (ac) Voltages

25 kV (50 Hz or 60 Hz) ac systems have achieved widespread use in many countries, including the UK, US, large parts of Europe, Asia, Africa and the Americas. Additionally 15 kV (16 2/3 Hz) networks still have widespread use within Europe and the US still has several 12 kV (25 Hz) lines.

The US, South Africa and Canada also operate 50 kV systems in operation (typically used on systems for mine haulage).

It would be fair to say that 25 kV has become the international standard. This is covered by two standards:

  • BS EN 50163 - Railway applications. Supply voltages of traction systems
  • IEC 60850 - Railway Applications. Supply voltages of traction systems

Alternating current systems invariably are supplied by overhead lines. It is worth noting that most implementations are single phase (due to problems with picking up three phases from the overhead lines).  

That's it; a quick summary. It doesn't cover every voltage, but hopefully will give everyone a general understanding of the most common voltages used.

If anyone has anything to add or want to give a few more details, please do so below.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Nikola Tesla

Nikola Tesla was born exactly at midnight on July 10, 1856 in the tiny village of Smiljan, Lika in Croatia. In his late teens, Tesla left the village to...

Arc Flash Calculations

Working in the vicinity of electrical equipment poses an hazard. In addition to electric shock hazard, fault currents passing through air causes Arc Flash...

Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

Variable Frequency Drive

Variable frequency drives are widely used to control the speed of ac motors.  This note looks at the mechanisms which enable drive units to control the...

Why is electricity so hard to understand?

It's been a busy few months on different projects or busy couple of decades depending on how I look at it. I can say that on the odd (frequent) occasion...

Three Phase Power Simplified

A single phase system is perhaps the most common type of system most people are familiar with. This is what people have in their homes and what appliances...

Fault Calculation - Per Unit System

Per unit fault calculations is a method whereby system impedances and quantities are normalised across different voltage levels to a common base.  By removing...

Earth Electrode Resistance

Earthing of electrical systems is essential for the correct functioning and the protecting of life and equipment in the event of faults.  The earth electrode...

Michael Faraday (the father of electrical engineering)

Famed English chemist and physicist Michael Faraday was born on September 22, 1791, in Newington Butts, a suburb of Surrey just south of the London Bridge...

Understanding LV Circuit Breaker Fault Ratings

I think this post is going to be helpful to several of our readers. While the IEC low voltage circuit breaker Standard [IEC 60947-2, Low voltage switchgear...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note