Railway Electrification Voltages 

By on

This post is quick introduction and overview to different railway electrification voltages used in answer to a question sent in via email.

While there are numerous voltages in use through out the world (many dating back a hundred years), fortunately the number of voltages levels in common/widespread use is relatively few. To keep the post short, I will only list the more common voltages.

Both dc and ac systems are used. Direct current systems are generally used for metro lines and relatively commuter /regional systems up to around 100 km long. For longer and more heavily loaded routes, alternating current is generally used.

Direct Current (dc) Voltages

Most commonly used are 600/650 and 750 V. These are used world wide on mass transit, commuter and tram lines. Voltage is supplied to the train using a third rail or overhead lines.

1.5 kV (typically supplied overhead) is used in Europe, the US, China, Australia and a several other countries. Less common are 3 kV systems, but these can still be found in operation in several countries.

Alternating Current (ac) Voltages

25 kV (50 Hz or 60 Hz) ac systems have achieved widespread use in many countries, including the UK, US, large parts of Europe, Asia, Africa and the Americas. Additionally 15 kV (16 2/3 Hz) networks still have widespread use within Europe and the US still has several 12 kV (25 Hz) lines.

The US, South Africa and Canada also operate 50 kV systems in operation (typically used on systems for mine haulage).

It would be fair to say that 25 kV has become the international standard. This is covered by two standards:

  • BS EN 50163 - Railway applications. Supply voltages of traction systems
  • IEC 60850 - Railway Applications. Supply voltages of traction systems

Alternating current systems invariably are supplied by overhead lines. It is worth noting that most implementations are single phase (due to problems with picking up three phases from the overhead lines).  

That's it; a quick summary. It doesn't cover every voltage, but hopefully will give everyone a general understanding of the most common voltages used.

If anyone has anything to add or want to give a few more details, please do so below.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Meeting room of the future

The IET site has a video of a visit showing of a high tech meeting room developed at Napier University in Edinburgh. It a good demonstration of innovative...

Three Phase Power Simplified

A single phase system is perhaps the most common type of system most people are familiar with. This is what people have in their homes and what appliances...

Software Usage Guidelines

Using software in our  work is essential for most of us and we are becoming even more dependant on it's use.  While software is a great asset, many times...

What is an Open Delta Transformer

In three phase systems, the use of transformers with three windings (or legs) per side is common.  These three windings are often connected in delta or...

Lighting - Lamps

Lamps are the essential part of any luminaire. These are the light generating components. Since the advent of electrical lighting in the middle of the...

Voltage Drop in Installations - Concepts

Problems on achieving maximum voltage drop within an installation come up often. Depending where you live, local regulations will have different limits...

Paternoster Lifts

These lifts were first built in 1884 by J. E. Hall and called a paternoster ("Our Father", the first two words of the Lord's Prayer in Latin) due to its...

Microsoft OneNote

A couple of months ago I came Microsoft's OneNote and downloaded the 60 day free trail. Since then I have been using it regularly and now have a full license...

How to Calculate Motor Starting Time

Request to look at induction motor starting time have come up a few times on the site. Hopefully in this post, I give you guys some idea on how to calculate...

Power Factor

Power factor is the ratio between the real power (P in kW) and apparent power (S in kVA) drawn by an electrical load. The reactive power (Q in kVAr)...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note