Dielectric loss in cables 

By on

cableSection
Cable cross section showing
insulation
 
Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectric loss is measured using what is known as the loss tangent or tan delta (tan δ).  In simple terms, tan delta is the tangent of the angle between the alternating field vector and the loss component of the material.  The higher the value of tan δ the greater the dielectric loss will be.  For a list of tan δ values for different insulating material, please see the Cable Insulation Properties note.  

Note: in d.c. cables with a static electric field, there is no dielectric loss.  Hence the consideration of dielectric loss only applies to a.c. cables.

Cable Voltage

Dielectric loss only really become significant and needs to be taken into account at higher voltages.  IEC 60287 "Electric Cables - Calculation of the current rating", suggests that dielectric loss need only be considered for cables above the following voltage levels:

  Cable Type   U0, kV
Butyl Rubber 18
EDR 63.5
Impregnated Paper (oil or gas-filled) 63.5
Impregnated Paper (solid) 38
PE (high and low density) 127
PVC 6
XLPE (filled) 63.5
XLPE (unfilled) 127

 

Cable Dielectric Loss

Cable Capacitance

Cable capacitance can be obtained from manufacturers or for circular conductors calculated using the following:

  C= ε 18ln( D i d c ) 10 9 F. m 1

Given the tan δ and capacitance of the cable, the dielectric loss is easily calculated:

  W d =ω C U 0 2 tan δ

It is possible to use the above for other conductor shapes if the geometric mean is substituted for Di and dc.

Symbols

dc - diameter of conductor, mm
Di - external diameter of insulation, mm
C - cable capacitance per unit length, F.m-1
U0 - cable rated voltage to earth,  V
Wd - dielectric loss per unit length, W.m-1
tan δ - loss factor for insulation
ε - insulation relative permitivity
ω - angular frequency (2πf)

See Also



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Equipment Verification (to IEC Standards)

One of the requirements to ensuring that everything works is to have equipment selected, manufactured and verified [tested] to IEC standards. Not all equipment...

Three Phase Current - Simple Calculation

The calculation of current in a three phase system has been brought up on our site feedback and is a discussion I seem to get involved in every now and...

Windows Live Writer and myElectrical

When making adding a Note to our site we have a great online WYSIWYG editor and things are pretty simple.  However, if you prefer you can write, manage...

Network Theory – Introduction and Review

In electrical engineering, Network Theory is the study of how to solve circuit problems. By analyzing circuits, the engineer looks to determine the various...

EU Code of Conduct on Data Centres - Best Practices

The European Union is implementing a voluntary code of practice for participants with the aim of improving the overall efficiency of data centres. As part...

Periodic Electrical Installation Inspection – How Often?

How often installations are inspected is up to the owner of the installation, provided such durations do not exceed any regulatory maximums in force. ...

UPS Battery Sizing

Various techniques exist to enable the correct selection of batteries for UPS applications.  The procedure described below is one of the more common. ...

What happened to the cable notes?

If you are wondering what happened to our cable notes, the short answer is that we have moved them to myCableEngineering.com.  The "Knowledge Base" at...

Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

What is an Open Delta Transformer

In three phase systems, the use of transformers with three windings (or legs) per side is common.  These three windings are often connected in delta or...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note