Dielectric loss in cables 

By on

cableSection
Cable cross section showing
insulation
 
Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectric loss is measured using what is known as the loss tangent or tan delta (tan δ).  In simple terms, tan delta is the tangent of the angle between the alternating field vector and the loss component of the material.  The higher the value of tan δ the greater the dielectric loss will be.  For a list of tan δ values for different insulating material, please see the Cable Insulation Properties note.  

Note: in d.c. cables with a static electric field, there is no dielectric loss.  Hence the consideration of dielectric loss only applies to a.c. cables.

Cable Voltage

Dielectric loss only really become significant and needs to be taken into account at higher voltages.  IEC 60287 "Electric Cables - Calculation of the current rating", suggests that dielectric loss need only be considered for cables above the following voltage levels:

  Cable Type   U0, kV
Butyl Rubber 18
EDR 63.5
Impregnated Paper (oil or gas-filled) 63.5
Impregnated Paper (solid) 38
PE (high and low density) 127
PVC 6
XLPE (filled) 63.5
XLPE (unfilled) 127

 

Cable Dielectric Loss

Cable Capacitance

Cable capacitance can be obtained from manufacturers or for circular conductors calculated using the following:

  C= ε 18ln( D i d c ) 10 9 F. m 1

Given the tan δ and capacitance of the cable, the dielectric loss is easily calculated:

  W d =ω C U 0 2 tan δ

It is possible to use the above for other conductor shapes if the geometric mean is substituted for Di and dc.

Symbols

dc - diameter of conductor, mm
Di - external diameter of insulation, mm
C - cable capacitance per unit length, F.m-1
U0 - cable rated voltage to earth,  V
Wd - dielectric loss per unit length, W.m-1
tan δ - loss factor for insulation
ε - insulation relative permitivity
ω - angular frequency (2πf)

See Also



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Switchboard - Forms of Internal Separation

IEC 61439 'Low-voltage switchgear and controlgear assemblies', specifies standard arrangements of switchboard (call forms of internal separation). The...

Lithium Ion Battery

Over recent years the Lithium Ion battery has become popular in applications requiring high power densities with small weight and footprint.  Today Lithium...

IEEE Winds of Change

IEEE TV has a part series of videos on wind power and it's implication. For a really good overview to the technologies and issues around wind power, these...

Voltage Levels – Confused?

I was having a conversation the other day about voltage levels.  While everyone was in agreement that low voltage was 1000 V and less, there was more confusion...

Robots - Interesting Videos

The robot folding towels post below was interesting enough at the time to post a link.  Recently I’ve come across a couple of other interesting videos...

Getting Started with Patents

If you have a great idea or invent something the last thing you want is someone to steal the idea. One of the things you can do is protect the intellectual...

Windows Live Writer and myElectrical

When making adding a Note to our site we have a great online WYSIWYG editor and things are pretty simple.  However, if you prefer you can write, manage...

Understanding LV Circuit Breaker Fault Ratings

I think this post is going to be helpful to several of our readers. While the IEC low voltage circuit breaker Standard [IEC 60947-2, Low voltage switchgear...

Closed Doors

"I can live with doubt and uncertainty and not knowing. I think it is much more interesting to live not knowing than to have answers that might be wrong...

Tips for a better Low Voltage Protection Discrimination Study

Carrying out a protection system discrimination study is critical to ensure the correct functioning of  the electrical system in the event of faults. ...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note