Dielectric loss in cables 

By on

cableSection
Cable cross section showing
insulation
 
Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectric loss is measured using what is known as the loss tangent or tan delta (tan δ).  In simple terms, tan delta is the tangent of the angle between the alternating field vector and the loss component of the material.  The higher the value of tan δ the greater the dielectric loss will be.  For a list of tan δ values for different insulating material, please see the Cable Insulation Properties note.  

Note: in d.c. cables with a static electric field, there is no dielectric loss.  Hence the consideration of dielectric loss only applies to a.c. cables.

Cable Voltage

Dielectric loss only really become significant and needs to be taken into account at higher voltages.  IEC 60287 "Electric Cables - Calculation of the current rating", suggests that dielectric loss need only be considered for cables above the following voltage levels:

  Cable Type   U0, kV
Butyl Rubber 18
EDR 63.5
Impregnated Paper (oil or gas-filled) 63.5
Impregnated Paper (solid) 38
PE (high and low density) 127
PVC 6
XLPE (filled) 63.5
XLPE (unfilled) 127

 

Cable Dielectric Loss

Cable Capacitance

Cable capacitance can be obtained from manufacturers or for circular conductors calculated using the following:

  C= ε 18ln( D i d c ) 10 9 F. m 1

Given the tan δ and capacitance of the cable, the dielectric loss is easily calculated:

  W d =ω C U 0 2 tan δ

It is possible to use the above for other conductor shapes if the geometric mean is substituted for Di and dc.

Symbols

dc - diameter of conductor, mm
Di - external diameter of insulation, mm
C - cable capacitance per unit length, F.m-1
U0 - cable rated voltage to earth,  V
Wd - dielectric loss per unit length, W.m-1
tan δ - loss factor for insulation
ε - insulation relative permitivity
ω - angular frequency (2πf)

See Also



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Tip – Latitude and Longitude on Large Scale Plans

If you are working on a large plan, get the real coordinates [latitude, longitude] for two or more points and add them to the drawing. That way you can...

Material Properties

Everything physical in electrical engineering from insulations to conductors revolves around materials. Here we are listing common materials along with...

Multimeter

Multimeters are undoubtedly the most common item of electrical test equipment in use.  Often it is the first piece of equipment people will turn to when...

International System of Units (SI System)

The International System of Units (abbreviated SI) is the world's most widely used system of units.  The system consists of a set of units and prefixes...

Medium Voltage Switchgear Room Design Guide

Many medium voltage (MV) indoor switchgear rooms  exist worldwide. The complexity of these rooms varies considerably depending on location, function and...

Cable Sheath and Armour Loss

When sizing cables, the heat generated  by losses within any sheath or armour need to be evaluated. When significant, it becomes a factor to be considered...

How to Calculate Motor Starting Time

Request to look at induction motor starting time have come up a few times on the site. Hopefully in this post, I give you guys some idea on how to calculate...

Cable Sizing Software

When sizing cables nearly, everyone uses some form of software. This ranges from homespun spreadsheets to complex network analyses software. Each has its...

Lightning Risk Assessment (IEC 62305)

IEC 62305 'Protection against lightning' requires a risk assessment be carried out to determine the characteristics of any lightning protection system...

Fault Calculations - Introduction

Fault calculations are one of the most common types of calculation carried out during the design and analysis of electrical systems. These calculations...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note