Dielectric loss in cables 

By on

cableSection
Cable cross section showing
insulation
 
Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectric loss is measured using what is known as the loss tangent or tan delta (tan δ).  In simple terms, tan delta is the tangent of the angle between the alternating field vector and the loss component of the material.  The higher the value of tan δ the greater the dielectric loss will be.  For a list of tan δ values for different insulating material, please see the Cable Insulation Properties note.  

Note: in d.c. cables with a static electric field, there is no dielectric loss.  Hence the consideration of dielectric loss only applies to a.c. cables.

Cable Voltage

Dielectric loss only really become significant and needs to be taken into account at higher voltages.  IEC 60287 "Electric Cables - Calculation of the current rating", suggests that dielectric loss need only be considered for cables above the following voltage levels:

  Cable Type   U0, kV
Butyl Rubber 18
EDR 63.5
Impregnated Paper (oil or gas-filled) 63.5
Impregnated Paper (solid) 38
PE (high and low density) 127
PVC 6
XLPE (filled) 63.5
XLPE (unfilled) 127

 

Cable Dielectric Loss

Cable Capacitance

Cable capacitance can be obtained from manufacturers or for circular conductors calculated using the following:

  C= ε 18ln( D i d c ) 10 9 F. m 1

Given the tan δ and capacitance of the cable, the dielectric loss is easily calculated:

  W d =ω C U 0 2 tan δ

It is possible to use the above for other conductor shapes if the geometric mean is substituted for Di and dc.

Symbols

dc - diameter of conductor, mm
Di - external diameter of insulation, mm
C - cable capacitance per unit length, F.m-1
U0 - cable rated voltage to earth,  V
Wd - dielectric loss per unit length, W.m-1
tan δ - loss factor for insulation
ε - insulation relative permitivity
ω - angular frequency (2πf)

See Also



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Arc Flash Calculations

Working in the vicinity of electrical equipment poses an hazard. In addition to electric shock hazard, fault currents passing through air causes Arc Flash...

Introduction to Cathodic Protection

If two dissimilar metals are touching and an external conducting path exists, corrosion of one the metals can take place.  Moisture or other materials...

Our internet address and Vanity URLs

Visitors who like to type web address rather then click menus may be interested in how our URL structure works.

Multimeter

Multimeters are undoubtedly the most common item of electrical test equipment in use.  Often it is the first piece of equipment people will turn to when...

Thomas Edison

American inventor Thomas Alva Edison was born in Milan, Ohio on February 11, 1847. He was the youngest of seven children and received little formal schooling...

Cable Sizing Tool

Our cable sizing tool is one of the more popular tools on the site.  The tool enables cables to be sized in compliance with BS 7671 (the IEE Wiring Regulations...

ABB Technical Guides - Motor Operation

ABB has produced a range of technical guides that offer concise explanations of the major technologies and technical issues in low voltage AC drives. ...

Material Properties

Everything physical in electrical engineering from insulations to conductors revolves around materials. Here we are listing common materials along with...

Fault Calculation - Symmetrical Components

For unbalance conditions the calculation of fault currents is more complex. One method of dealing with this is symmetrical components. Using symmetrical...

Cost Performance and Time

Often us engineers get so bogged down in equations, using software, producing drawings and writing specifications that this becomes the sole focus.   ...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note