Fire Resistant and Fire Retardant Cables 

By on

Fire resistant and fire retardant cable sheaths are design to resist combustion and limit the propagation of flames. Low smokes cables have a sheath designed to limit the amount of smoke and toxic halogen gases given off during fire situations.

cableFlameTest
IEC 60332-3, BS 4066- 3
Test Non propagation of
fire on bunched cables

Fire Rated Cables

  • Flame Retardant - designed for use in fire situations where the spread of flames along a cable route needs to be retarded
  • Fire Resistant (FR) - cables are designed to maintain circuit integrity of those vital emergency services during the fire
  • Low Smoke and Fume (LSF) - burns with very little smoke and fumes compared to standard PVC, fumes may contain halogens
  • Low Smoke Zero Halogen (LSZH) - when burns there is very little smoke and fumes (compared to standard PVC the fumes contain no halogens
  • Alternative names for LSZH - LSZO (Low Smoke Zero Halogen), 0HLS (Zero Halogen Low Smoke), LSHF (Low Smoke Halogen Free)

Due to relative low cost, fire retardant cables are widely used as fire survival cables. . Fire resistant cables are often used to maintain circuit integrity of those vital life safety systems such as fire alarm and suppression services.

Flame Retardant Standards

  • IEC 60332-1/BS 4066-1 - flame test on single vertical insulated wires/cables
  • IEC 60332-3/BS 4066-3 - flame test on bunched wires/cables
  • UL Standard for Fire Retardant Cable 
  • CMP (Plenum Flame Test/ Steiner Tunnel Test) - plenum rated cables meeting NFPA -262 
  • CMR (Riser Flame Test) - riser rated cables meeting UL1666
  • CM (Vertical Tray Flame Test) - general purpose cables meeting UL 1581
  • CMG (Vertical Tray Flame Test) - general purpose cables meeting UL1581
  • CMX (Vertical Wire Flame Test) - restricted cables meeting UL1581

Fire Resistance Standards

    • IEC 60331 - fire resistance test
    • BS 6387 - fire resistance test (more stringent than IEC 60331)

    Low Smoke Zero Halogen Cable

    Increasingly used in public and government buildings and where there is sensitive electronic equipment (i.e. Hospitals, Supermarkets, Airports, Control Rooms & Computer Suites) these cables are designed for increased safety in the case of a fire:

    • Reduction in hazardous fumes which can cause injury when inhaled
    • Reduction in corrosive chemicals which can cause damage to electronics

    Historically, most cables used in installations have been insulated with PVC or similar materials.  In fires, these insulation materials release chlorine gas.  Chlorine is a poisonous gas and a danger to people.  In addition it forms hydrochloric acid when coming into contact with water.   Hydrochloric acid can have devastating effects on adjacent equipment.

    To overcome the problems associated with the release of chlorine gas, halogen-free cables are used.  Typically a halogen free cable is made of polypropylene, which does not produce a dangerous gas or acid in fire conditions.

    Cables intended to fulfil this type of function are often labelled as one of the following:

    • LSZH - Low Smoke Zero Halogen
    • LSOH - Low Smoke Zero Halogen
    • LSF - Low Smoke and Fume
    • OHLS - Zero Halogen Low Smoke

    Both LSZH and LSF are used to limit smoke, fumes and halogen given off in fire conditions.

    In the event of a fire, both types will emit very low levels of smoke. LSF cable will emit toxic gases while LSZH will limit the emission of these (typically under 0.5% hydrogen chloride emission). In addition to being toxic, hydrogen chloride is corrosive to equipment. The use of LSZH cables protect both people and limit the amount of equipment damage during a fire situation.

    LSF is often a modified PCV with hydrogen chloride additives and while performing better than PVC will give off more smoke and fumes than LSZH. Hydrogen chloride emissions of LSF cable may reach up to 18%.

    Compared with normal PVC cables and LSF, zero halogen cables have better fire retardant properties, low toxic and corrosive gas emissions and low smoke emission.

    Halogen & Smoke Emission, Corrosively & Toxicity Standards

    • IEC 60754-1/BS6425-1 - emission of halogen
    • IEC 60754-2 - corrosivity
    • IEC 61034-1/ASTM E662 - emission of smoke
    • ISO4589-2/BS2863 - oxygen index LOI
    • ISO4589-3/BS2782.1 - temperature index TI
    • ES713 - toxicity index


    Steven McFadyen's avatar Steven McFadyen

    Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

    myElectrical Engineering

    comments powered by Disqus

    1. ram31's avatar ram31 says:
      7/9/2013 12:44 PM

      BS 6387(CWZ) is for fire alarm & emergency lighting cables with 750V max.

      BS8519 is "code of practice for selection and instalaltion of fire-resistant power & control cable systems for fire safety and fire-fighting applications". Power cable has to meet with requirement of BS8491 Cat1 or Cat2 or Cat3.

      • Steven's avatar Steven says:
        7/9/2013 1:22 PM

        ram31, thanks for expanding on the references and adding the British Standard ones.


    Comments are closed for this post:
    • have a question or need help, please use our Questions Section
    • spotted an error or have additional info that you think should be in this post, feel free to Contact Us



    Famous Scientists

    Here’s list of some famous scientists. Deliberately short, with the aim to provide a quick memory jog or overview. If your looking for more detailed information...

    8 Motor parts and common faults

    Straight forward list of some common motor faults.  If I have missed any other common faults, please take a bit of time to add them in as a comment below...

    Robots - Interesting Videos

    The robot folding towels post below was interesting enough at the time to post a link.  Recently I’ve come across a couple of other interesting videos...

    Smarter Electrical Distribution

    The other day I came across an article in Technology Review on the development of a smart transformer. A professor at North Carolina State University is...

    Frame Leakage Protection

    While not as popular as it once was, frame leakage protection does still have some use in some circumstances.  In essence frame leakage is an earth fault...

    Medium Voltage Switchgear Room Design Guide

    Many medium voltage (MV) indoor switchgear rooms  exist worldwide. The complexity of these rooms varies considerably depending on location, function and...

    How D.C. to A.C. Inverters Work

    Traditionally generation of electricity has involved rotating machines to produce alternating sinusoidal voltage and current (a.c. systems). With the development...

    The dc resistance of conductors

    This is the first of two posts on the resistance of conductors. In the next post I will look at the ac resistance, including skin effect and we deal with...

    Voltage Levels – Confused?

    I was having a conversation the other day about voltage levels.  While everyone was in agreement that low voltage was 1000 V and less, there was more confusion...

    Post Authorship

    In 2011, with the introduction of it’s Panda search ranking algorithms, Google introduced tools for determining the original author of posts.  The intention...

    Have some knowledge to share

    If you have some expert knowledge or experience, why not consider sharing this with our community.  

    By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

    To get started and understand our policy, you can read our How to Write an Electrical Note