Tip – Latitude and Longitude on Large Scale Plans 

By on

If you are working on a large plan, get the real coordinates [latitude, longitude] for two or more points and add them to the drawing.  That way you can always work out the scale and dimensions.

I know that drawings have scales, grids etc. on them and they are supposed to work.  However, many times I've come across drawings where things don’t tie up.  There can be hundreds of reasons – mix-ups as drawings are moved between different parties, human errors in CAD, messed units,  printing problems, etc.  Having just spent a few hours sorting out the latest wrongly scaled drawing that’s come across my desk, I thought it would be helpful to pass on this tip.

As a bit more general information, we have the following:

Understanding:  latitude are parallel lines running North and South of the equator. Longitude are vertical lines running West or East from the Greenwich prime meridian (located just outside London).  Distance between lines of latitude are approximately equal (minor variances due to the shape of the earth.  Between lines of longitude the distance is greatest at equation and the lines converge at the poles.

Presentation: latitude and longitude can be presented in degrees, minutes, seconds or decimal degrees.  To mark coordinates using degrees, minutes, seconds - it is generally accepted that the latitude should be written first followed by longitude.  The latitude degrees should be two digits and the longitude three digits (i.e. 08°14’16” 128°34’32”).  Designations N, S, W or E are not required, although often used.

Accuracy: when using on site plots, make sure you have sufficient accuracy in the coordinates (this will usually mean two or more decimal places on the seconds).  One second of latitude is approximate equal to 30 M.  One second of longitude is approximately equal to 30 M at the equation, moving to zero at the poles.

Image reproduced from Wikipedia (http://en.wikipedia.org/wiki/File:Latitude_and_Longitude_of_the_Earth.svg),
access 04 October 2011



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Back to Basics - Ohm’s Law

Electrical engineering has a multitude of laws and theorems. It is fair to say the Ohm's Law is one of the more widely known; it not the most known. Developed...

What are you reading!

Reading is a bit of a hobby of mine and I"ve done a few off-topic posts in the past on this. Rather than continue doing the occasional post I thought ...

Battery Sizing

This article gives an introduction to IEEE 485 method for the selection and calculation of battery capacity.

ANSI (IEEE) Protective Device Numbering

The widely used United Sates standard ANSI/IEEE C37.2 'Electrical Power System Device Function Numbers, Acronyms, and Contact Designations' deals with...

IEC 60287 Current Capacity of Cables - Rated Current

In the previous note we looked at the approach taken by the standard to the sizing of cables and illustrated this with an example.  We then looked at one...

Autonomous Vehicle Challenge

Two driverless and solar power vans have departed from Italy on their way to China via the silk road. During the 13,000 kM trip the vans will drive themselves...

GE's Shingijutsu Factory

GE's latest thinking on product manufacturing is he Shingijutsu philosophy or Lean production system. They have started applying this at the Louisville...

Motor Insulation

Insulation on a motor prevents interconnection of windings and the winding to earth.  When looking at motors, it is important to understand how the insulation...

Famous Scientists

Here’s list of some famous scientists. Deliberately short, with the aim to provide a quick memory jog or overview. If your looking for more detailed information...

DC Motor Operation

Coils of wire on the rotor carry a d.c. current which generates a magnetic field. A stator magnetic field is created using either permanent magnets or...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note