International System of Units (SI System) 

By on

si_petitThe International System of Units (abbreviated SI) is the world's most widely used system of units.  The system consists of a set of units and prefixes. 

Note: this SI system is being revised to define the unit of mass in terms of fundamental constants. In addition the definitions ampere and kelvin will revised.

Several countries have only partially adopted the SI System; the United States being notable in this regard.  A full list of SI units, a conversion calculator and conversion tables are maintained at:

Base Units

There are seven base units, from which all other units are derived.  Each base unit is dimensionally independent.

Name Symbol Quantity
meter m The metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second.
kilogram kg The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.
second s The second is the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom.
ampere A The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between these conductors a force equal to 2 x 10–7 newton per metre of length.
kelvin K The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic temperature of the triple point of water.
mole mol The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon 12. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles, or specified groups of such particles.
candela cd The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540 x 1012 hertz and that has a radiant intensity in that direction of 1/683 watt per steradian.

Prefixes

Factor Name Symbol      Factor Name Symbol
101 deca da   10-1 deci d
102 hecto h   10-2 centi c
103 kilo k   10-3 mili m
106 mega M   10-6 micro μ
109 giga G   10-9 nano n
1012 tera T   10-12 pico p
1015 peta P   10-15 femto f
1018 exa E   10-18 atto a
1021 zetta Z   10-21 zepto z
1024 yotta Y   10-24 yocto y

Derived Units

Mechanical Units

  Symbol SI Unit Base Units
Acceleration a m s-2 m s-2
Angular Frequency ω rad s-1 rad s-1
Angular Momentum L kg m² s-1 kg m² s-1
Area A, S
Density ρ kg m-3 kg m-3
Energy E J (Joule) m² kg s-2
Force F N (Newton) m kg s-2
Frequency v, f Hz (Hertz) s-1
Momentum p kg m s-1 kg m s-1
Moment of Inertia I, J kg m² kg m²
Pressure P Pa (Pascal) m-1 kg s-2
Power P W (Watt) m² kg s-3
Speed, linear u m s-1 m s-1
Speed, rotational ω rad s-1 rad s-1
Stress p Pa m-1 kg s-2
Surface Tension λ N m-1 kg s-2
Torque T N m-1 kg s-2
Velocity u, v m s-1 m s-1
Viscosity: kinematic   m2 s-1 m2 s-1
Viscosity: dynamic μ, v Pa s m-1 kg s-1
Work We J m² kg s-2

Electrical & Magnetic Units

Symbol SI Unit Base Units
Admittance Y S (Siemens) m-2 kg-1 s³ A²
Capacitance C F (Farad) m-2 kg-1 s4
Charge Q C (Coulomb) s A
Charge density, area ρ C m-3 m-3 s A
Conductance G S (Siemens) m-2 kg-1 s³ A²
Conductivity σ S m-1 m-3 kg-1 s³ A²
Current (base unit) I, I A (Ampere) A
Current density J A m-2 A m-2
Electric field strength E V m-1 m kg s-3 A-1
Electric flux ψ C (coulomb) s A
Electric flux density D C m-2 m-2 s A
Electromotive force (e.m.f.) E, e V m² kg s-3 A-1
Frequency F Hz (Hertz) s-1
Impedance Z Ω m² kg s-3 A-2
Inductance, mutual M H m² kg s-2 A-2
Inductance, self L H (Henry) m² kg s-2 A-2
Magnetic field strength H A m-1 A m-1
Magnetic flux Φ, φ Wb (Weber) m² kg s-2 A-1
Magnetic flux density B T (Tesla) kg s-2 A-1
Magnetic flux linkage ψ Wb m² kg s-2 A-1
Magnetomotive force F A (ampere) A
    At (ampere-turns) A-turns
Permeability, absolute μ H m-1 m kg s-2 A-2
Permeability, free space μo H m-1 m kg s-2 A-2
Permeability, relative μr    
Permittivity, absolute ε F m-1 m-3 kg-1 s4
Permittivity, free space εo F m-1 m-3 kg-1 s4
Permittivity, relative εr    
Potential difference U, V V (Volt) m² kg s-3 A-1
Power, active P W(Watt) m² kg s-3
Power, apparent S VA m² kg s-3
Power, reactive Q var m² kg s-3
Reactance X Ω m² kg s-3 A-2
Reactive volt-ampere Q var  
Reluctance S A Wb-1 m-2 kg-1 s² A²
Resistance R Ω (Ohm) m² kg s-3 A-2
Resistivity Ω.m m3 kg s-3 A-2
Susceptance B S (Siemens) m-2 kg-1 s³ A²
Volt-ampere   VA V A
Voltage U, V V m² kg s-3 A-1
Wavelength λ m m

Heat Units

Symbol SI Unit Base Units
Critical pressure pc Pa (Pascal) m-1 kg s-2
Critical temperature Tc K K
Critical volume Vc
Cubic expansivity γ K-1 K-1
Heat capacity C J K-1 m² kg s-1 K-1
Linear expansivity α K-1 K-1
Molar heat capacity Cm J mol-1 K-1 m² kg s-2 mol-1 K-1
Quantity of heat Q J (Joule) m² kg s-2
Specific heat capacity cp, cv J kg-1 K-1 m² s-2 K-1
Specific latent heat l J kg-1 m2 s-2
Temperature t, θ, T K K
Thermal conductivity λ J m-1 s-1 K-1 m kg s-3 K-1
    W m-1 K-1

Photometric Optical Units

  Symbol SI Unit Base Units
Illuminance E lx (Lux) m-2 cd sr
Luminance L cd m-2 cd m-2
Luminous flux Φ, φ lm (Lumen) cd sr
Luminous efficacy   lm W-1 cd sr m-2 kg-1

Acoustical Units

  Symbol SI Unit Base Units
Frequency f Hz (Hertz) s-1
Intensity I W m-2 kg s-3
Power ratio   dB  
Reverberation time   s s

Writing Style

symbols – roman upright type, lowercase, un-capitalised (unless derived from a proper name), no full stop, not pluralised

space – a space separates number and the symbol, i.e. 124 kg, 2500 A

derived – units derived are expressed with space, dot and/or solidus (/), i.e. N m, N·m, m/s, m s-1, m·s-1

External Links



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



HTML Symbol Entities

HTML supports a variety of entity symbols which can be entered using either numbers or an entity name.  The number or name is preceded by the ‘&’ sign...

Why is electricity so hard to understand?

It's been a busy few months on different projects or busy couple of decades depending on how I look at it. I can say that on the odd (frequent) occasion...

International System of Units (SI System)

The International System of Units (abbreviated SI) is the world's most widely used system of units.  The system consists of a set of units and prefixes...

Questions - Reputation and Privilege

Our question and answer system while letting you do exactly what it says, is much more.  It is a dynamic user driven system, where our users not only ask...

Network Theory – Introduction and Review

In electrical engineering, Network Theory is the study of how to solve circuit problems. By analyzing circuits, the engineer looks to determine the various...

UPS Sizing - Rules of Thumb

It wasn't so long ago I was telling someone that I don't use rules of thumb as most things are easily calculated anyhow.   As it turns out I last week...

Gas Insulated or Air Insulated Switchgear

Various arguments exist around SF6 Gas Insulated (GIS) and Air Insulated (AIS) medium voltage switchgear. Recently we had to change a GIS design to AI...

Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

Load Flow Study – how they work

A load flow study is the analysis of an electrical network carried out by an electrical engineer. The purpose is to understand how power flows around...

Copyright Infringement

myElectrical does not support or promote the use of copyrighted material without the copyright owner's consent. If you believe that material for which...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note