Fire Resistant and Fire Retardant Cables 

By on

Fire resistant and fire retardant cable sheaths are design to resist combustion and limit the propagation of flames. Low smokes cables have a sheath designed to limit the amount of smoke and toxic halogen gases given off during fire situations.

cableFlameTest
IEC 60332-3, BS 4066- 3
Test Non propagation of
fire on bunched cables

Fire Rated Cables

  • Flame Retardant - designed for use in fire situations where the spread of flames along a cable route needs to be retarded
  • Fire Resistant (FR) - cables are designed to maintain circuit integrity of those vital emergency services during the fire
  • Low Smoke and Fume (LSF) - burns with very little smoke and fumes compared to standard PVC, fumes may contain halogens
  • Low Smoke Zero Halogen (LSZH) - when burns there is very little smoke and fumes (compared to standard PVC the fumes contain no halogens
  • Alternative names for LSZH - LSZO (Low Smoke Zero Halogen), 0HLS (Zero Halogen Low Smoke), LSHF (Low Smoke Halogen Free)

Due to relative low cost, fire retardant cables are widely used as fire survival cables. . Fire resistant cables are often used to maintain circuit integrity of those vital life safety systems such as fire alarm and suppression services.

Flame Retardant Standards

  • IEC 60332-1/BS 4066-1 - flame test on single vertical insulated wires/cables
  • IEC 60332-3/BS 4066-3 - flame test on bunched wires/cables
  • UL Standard for Fire Retardant Cable 
  • CMP (Plenum Flame Test/ Steiner Tunnel Test) - plenum rated cables meeting NFPA -262 
  • CMR (Riser Flame Test) - riser rated cables meeting UL1666
  • CM (Vertical Tray Flame Test) - general purpose cables meeting UL 1581
  • CMG (Vertical Tray Flame Test) - general purpose cables meeting UL1581
  • CMX (Vertical Wire Flame Test) - restricted cables meeting UL1581

Fire Resistance Standards

    • IEC 60331 - fire resistance test
    • BS 6387 - fire resistance test (more stringent than IEC 60331)

    Low Smoke Zero Halogen Cable

    Increasingly used in public and government buildings and where there is sensitive electronic equipment (i.e. Hospitals, Supermarkets, Airports, Control Rooms & Computer Suites) these cables are designed for increased safety in the case of a fire:

    • Reduction in hazardous fumes which can cause injury when inhaled
    • Reduction in corrosive chemicals which can cause damage to electronics

    Historically, most cables used in installations have been insulated with PVC or similar materials.  In fires, these insulation materials release chlorine gas.  Chlorine is a poisonous gas and a danger to people.  In addition it forms hydrochloric acid when coming into contact with water.   Hydrochloric acid can have devastating effects on adjacent equipment.

    To overcome the problems associated with the release of chlorine gas, halogen-free cables are used.  Typically a halogen free cable is made of polypropylene, which does not produce a dangerous gas or acid in fire conditions.

    Cables intended to fulfil this type of function are often labelled as one of the following:

    • LSZH - Low Smoke Zero Halogen
    • LSOH - Low Smoke Zero Halogen
    • LSF - Low Smoke and Fume
    • OHLS - Zero Halogen Low Smoke

    Both LSZH and LSF are used to limit smoke, fumes and halogen given off in fire conditions.

    In the event of a fire, both types will emit very low levels of smoke. LSF cable will emit toxic gases while LSZH will limit the emission of these (typically under 0.5% hydrogen chloride emission). In addition to being toxic, hydrogen chloride is corrosive to equipment. The use of LSZH cables protect both people and limit the amount of equipment damage during a fire situation.

    LSF is often a modified PCV with hydrogen chloride additives and while performing better than PVC will give off more smoke and fumes than LSZH. Hydrogen chloride emissions of LSF cable may reach up to 18%.

    Compared with normal PVC cables and LSF, zero halogen cables have better fire retardant properties, low toxic and corrosive gas emissions and low smoke emission.

    Halogen & Smoke Emission, Corrosively & Toxicity Standards

    • IEC 60754-1/BS6425-1 - emission of halogen
    • IEC 60754-2 - corrosivity
    • IEC 61034-1/ASTM E662 - emission of smoke
    • ISO4589-2/BS2863 - oxygen index LOI
    • ISO4589-3/BS2782.1 - temperature index TI
    • ES713 - toxicity index


    Steven McFadyen's avatar Steven McFadyen

    Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

    myElectrical Engineering

    comments powered by Disqus

    1. ram31's avatar ram31 says:
      7/9/2013 12:44 PM

      BS 6387(CWZ) is for fire alarm & emergency lighting cables with 750V max.

      BS8519 is "code of practice for selection and instalaltion of fire-resistant power & control cable systems for fire safety and fire-fighting applications". Power cable has to meet with requirement of BS8491 Cat1 or Cat2 or Cat3.

      • Steven's avatar Steven says:
        7/9/2013 1:22 PM

        ram31, thanks for expanding on the references and adding the British Standard ones.


    Comments are closed for this post:
    • have a question or need help, please use our Questions Section
    • spotted an error or have additional info that you think should be in this post, feel free to Contact Us



    Differential protection, the good old days

    This morning I was explaining how differential protection works to a junior engineer. To give him something to read I opened up the NPAG (Network Protection...

    Photovoltaic (PV) - Utility Power Grid Interface

    Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

    Tips for a better Low Voltage Protection Discrimination Study

    Carrying out a protection system discrimination study is critical to ensure the correct functioning of  the electrical system in the event of faults. ...

    Fire Resistant and Fire Retardant Cables

    Fire resistant and fire retardant cable sheaths are design to resist combustion and limit the propagation of flames. Low smokes cables have a sheath designed...

    Photovoltaic (PV) Panel - Performance Modelling

    In an earlier note on the site [Photovoltaic (PV) - Electrical Calculations], the theory of solar (PV) cell calculations was introduced.  In particular...

    Useful Motor Technical Information

    Sometimes it’s useful to be able to quickly lookup a piece of technical information.  This note is a collection of information related to motors, and in...

    IEC Document Designation

    Often document control is dictated by project requirements, for example a particular organisation may have an existing numbering system. Existing company...

    Understanding Circuit Breaker Markings

    IEC 60947 is the circuit breaker standard and covers the marking of breakers in detail. Any manufacturer following this standard should comply with the...

    What are you reading!

    Reading is a bit of a hobby of mine and I"ve done a few off-topic posts in the past on this. Rather than continue doing the occasional post I thought ...

    Low Voltage Switchroom Design Guide

    Low voltage (LV) switchrooms are common across all industries and one of the more common spatial requirements which need to be designed into a project...

    Have some knowledge to share

    If you have some expert knowledge or experience, why not consider sharing this with our community.  

    By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

    To get started and understand our policy, you can read our How to Write an Electrical Note