Introduction to Traction Substations 

By on

Following on from my post on railway electrification voltages, I thought an introduction to traction substations would be a good idea.

Traction substations are used to convert electrical power as supplied by the power utility (or rail operators own network) to a form suitable for providing power to a rail system (via third rail or overhead line). Depending on the type of rail system this power would be either direct current (dc) or alternating current (ac).

For dc systems, the traction substation core equipment will be the transformers and rectifiers to used to convert the utility supply to dc. Rectifiers are either 6, 12 or 24 pulse. In addition the dc traction substation will contain circuit breakers to ensure the system is adequately protected and switching devices allowing operation and maintenance of the system.

For ac systems, the traction substation core equipment will be transformers which connect to the three phase power utility supply to convert this to a single phase voltage suitable for the rail electrification system being used. Again circuit breakers and switching devices will be provided to ensure adequate system protection and operation and allow for maintenance.

Alternating current supply on the traction side is single phase and can lead to imbalance on the three phase utility beyond allowable limits. Balancing devices (Scott transformers, static convertors, etc.) are often used to achieve these limits.

Generally traction substations will be controlled by SCADA systems and will likely provide power for auxiliary systems such as signaling and other track side purposes.

Traction substations have harsher operational and stability constraints than normal power distribution substations. These include being subject to frequent short circuits, transient spikes, voltage depressions and voltage rises. The use of thyristor controlled traction drives generate significant harmonics, affecting the supply system.

Given the unique issues associated with rail power, the design, construction and operation of traction substations has many technical challenges. Add into this, loading from many trains running at the same time and modern design is heavily dependent on software support.

Please feel free to add comments below or suggest any items which you thing would be a good topic for a more detailed post.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus

  1. Sanjay's avatar Sanjay says:
    1/2/2013 6:08 AM

    Would like to kbnow about the traction substation equipment ararngements,layout,spacing and building foot print of the traction substation.What standards are followed for the traction substations?Is there any specific requirements laid by IEC in this regard?


Comments are closed for this post:
  • have a question or need help, please use our Questions Section
  • spotted an error or have additional info that you think should be in this post, feel free to Contact Us



Control Theory

Control theory looks at how systems work and are controlled from a mathematical view.  This note gives a brief introduction to some of the concepts – more...

Network Theory – Introduction and Review

In electrical engineering, Network Theory is the study of how to solve circuit problems. By analyzing circuits, the engineer looks to determine the various...

How to Size Power Cable Duct

Some colleagues had an issue earlier in the week on sizing conduits to be cast in concrete for some power cables . It became clear that none of us had...

Robotics - Home Innovations

We have a sister note to this (Robots - Interesting Video), in which I have posted some videos of interesting robots developed by commercial corporations...

Harmonised Cable Codes and Colours

Within Europe the European Committee for Electrotechnical Standardization (CENELEC) has standardised the both the designation and colour of cables.   ...

Wiki Depreciation

We have had the Wiki with us for a long time now, but at last I have decided to say bye bye – more details on why below.

Photovoltaic (PV) - Utility Power Grid Interface

Photovoltaic (PV) systems are typically more efficient when connected in parallel with a main power gird. During periods when the PV system generates energy...

How to measure power supply quality

If your are ever called out to troubleshoot something on your electrical system, one of the first things consider is the supply voltage. You want to ensure...

How D.C. to A.C. Inverters Work

Traditionally generation of electricity has involved rotating machines to produce alternating sinusoidal voltage and current (a.c. systems). With the development...

Photovoltaic (PV) - Electrical Calculations

Photovoltaic (PV) cells (sometimes called solar cells) convert solar energy into electrical energy.  Every year more and more PV systems are installed...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note