Understanding electric motor insulation & temperature 

By on

Anyone specifying or using electric motors should have a basic understanding how the insulation is related to temperature. Three classes of insulation are in common use (with 'F' being the most common):

  • class B - with a maximum operating temperature of 130 oC
  • class F - with a maximum operating temperature of 155 oC
  • class H - with a maximum operating temperature of 180 oC

The image (which is form an ABB catalogue for their low voltage performance motors), shows how temperature rise is distributed across the insulation.

Typically motors are designed for a maximum ambient temperature of 40 oC.

The difference between the average winding temperature and any hot spot is limited and it is usual to allow a 10 oC margin for class 'B' and 'F' insulation and a 15 oC margin for class 'H'.

Considering the ambient temperature and hot spot allowance gives the maximum temperature rise within which the motor must be designed to operate (105 oC for class 'F' for example).

When specifying (buying) a motor there are a couple of options. An insulation class could be specified and the motor specified as designed to run within that class. Alternatively the motor could be specified for an insulation class, but be design to run at a low class (for example insulation class 'F', temperature rise 'B').

The advantage of the second method is that there is an inherent 25 oC safety margin - useful if you are in a region with high ambient temperatures or need to date the motor for some other reason. Running motors at a reduced temperature will also significantly extend the useful life.



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Earth Electrode Resistance

Earthing of electrical systems is essential for the correct functioning and the protecting of life and equipment in the event of faults.  The earth electrode...

IEC 60287 Current Capacity of Cables - An Introduction

IEC 60287 "Calculation of the continuous current rating of cables (100% load factor)" is the International Standard which defines the procedures and equations...

Electric Motors

Collection of links to various places with useful motor information. I’ll try and return to the page every now and again to update it with any motor notes...

Useful Motor Technical Information

Sometimes it’s useful to be able to quickly lookup a piece of technical information.  This note is a collection of information related to motors, and in...

Material Properties

Everything physical in electrical engineering from insulations to conductors revolves around materials. Here we are listing common materials along with...

Capacitor Theory

Capacitors are widely used in electrical engineering for functions such as energy storage, power factor correction, voltage compensation and many others...

Motor Efficiency Classification

Electric motors are one of the most widely used items of electrical equipment. Improving motor efficiency benefits include, reduced power demand, lower...

Arc Flash Calculations

Working in the vicinity of electrical equipment poses an hazard. In addition to electric shock hazard, fault currents passing through air causes Arc Flash...

ANSI (IEEE) Protective Device Numbering

The widely used United Sates standard ANSI/IEEE C37.2 'Electrical Power System Device Function Numbers, Acronyms, and Contact Designations' deals with...

What is LED?

Light Emitting Diodes (LED ) are increasing gaining favour in both the domestic and commercial sectors; due to their efficiency, sustainability and durability...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note