Material Properties 

By on

metallurgyEverything physical in electrical engineering from insulations to conductors revolves around materials.  Here we are listing common materials along with their most useful properties in relation to electrical engineering. 

The Table of Resistivities

This table shows the resistivity and temperature coefficient of various materials at 20°C (68 °F)

Material  Resistivity (Ω-m) at 20 °C  Coefficient*  
Silver 1.59×10-8 0.0038
Copper 1.72×10-8 0.0039
Gold 2.44×10-8 0.0034
Aluminium 2.82×10-8 0.0039
Calcium 3.3x10-8 ?
Tungsten 5.60×10-8 0.0045
Nickel 6.99×10-8 ?
Iron 1.0×10-7 0.005
Tin 1.09×10-7 0.0045
Platinum 1.1×10-7 0.00392
Lead 2.2×10-7 0.0039
Manganin 4.82×10-7 0.000002
Constantan 4.9×10-7 0.00001
Mercury 9.8×10-7 0.0009
Nichrome 1.10×10-6 0.0004
Carbon 3.5×10-5 -0.0005
Germanium 4.6×10-1 -0.048
Silicon 6.40×102 -0.075
Glass 1010 to 1014 ?
Hard rubber approx. 1013 ?
Sulfur 1015 ?
Paraffin 1017 ?
Quartz (fused) 7.5×1017 ?
PET 1020 ?
Teflon 1022 to 1024 ?

* the numbers in this column increase or decrease the significant portion of the resistivity. For example, at 30°C (303.15 K), the resistivity of silver is 1.65×10-8. This is calculated as Δρ = α ΔT ρo where ρo is the resistivity at 20°C and α is the temperature coefficient .

The Properties Tables

Properties of Non Metallic Solids (at 293 k)

ρ' Tm λ εr Legend:
ρ' = Density, kg m-3
Tm = Melting point, K
λ = Thermal conductivity, W m-1K-1
εr = Relative permittivities at 293 K
Alumina,ceramic 3800 2300 29 -
Amber - - - 2.8
Bone 1850 - - -
Brick,building 2300 - 0.6 -
Brick,fireclay 2100 - 0.8 -
Brick,paving 2500 - - -
Brick,silica 1750 - 0.8 -
Carbon,graphite 2300 3800 5 -
Carbon,diamond 3300 - 900 -
Concrete 2400 - 0.1 -
Cork 240 - 0.05 -
Cotton 1500 - - -
Ebonite - - - 2.7-2.9
Epoxy resin 1120 - - -
Fluon (PTFE) 2200 - 0.25 -
Glass,crown 2600 1400 1 5-10
Glass,flint 4200 1500 0.8 5-10
Glass wool 50 1400 0.04 5-10
Ice 920 273 2 75
Kapok 50 - 0.03 -
Magnesium oxide 3600 3200 - -
Marble 2600 - 2.9 8.5
Melamine formaldehyde 1500 - 0.3 -
Mica - - - 5.7-6.7
Naphthalene 1150 350 0.4 -
Nylon 1150 470 0.25 -
Paraffin wax 900 330 0.25 2-2.3
Perspex 1190 350 0.2 3.5
Phenol formaldehyde 1300 - 0.2 -
Polyethylene,low density 920 410 - -
Polyethylene,high density 955 410 - -
Polypropylene 900 450 - -
Polystyrene 1050 510 0.08 2.55
Polyvinylchloride (PVC),non-rigid 1250 485 - 4.5
Polyvinylchloride (PVC),rigid 1700 485 - 4.5
Polyvinylidine chloride - 470 - -
Quartz fibre 2660 2020 9.2 -
Rubber (polyisoprene) 910 300 0.15 -
Silicon carbide 3170 - - -
Sulphur 2070 386 0.26 3.6-4.3
Teflon - - - 2.1
Titanium carbide 4500 - 28 -
Wood,oak (with grain) 650 - 0.15 -
Wood,Spruce (with grain) 600 - - -
Wood,Spruce (across grain) - - - -
 
 

Properties of Metallic Solids (at 293 K)

ρ' Tm λ ρ x10-8  α20 x10-4 Legend:
ρ = Density, kg m-3
Tm = Melting point, K
λ = Thermal conductivity, W m-1 K-1
ρ = Electrical Resistivity, Ω m
α20 = Temperature coefficient of resistance, K-1
Aluminium 2710 932 201 2.65 40
Aluminium, strong alloy 2800 800 180 5 16
Antimony 6680 904 18 40 50
Bismuth 9800 544 8 115 45
Brass (70Cu/30Zn) 8500 1300 110 8 15
Bronze (90Cu/10Sn) 8800 1300 180 30 -
Cobalt 8900 1765 69 6 66
Constantan 8880 1360 23 47 0.4
Copper 8930 1356 385 1.7 39
German silver (60Cu/25Zn/15Ni) 8700 1300 29 33 4
Gold 19300 1340 296 2.4 34
Invar (64Fe/36Ni) 8000 1800 16 81 20
Iron, pure 8780 1810 80 10 65
Iron, cast grey 7150 1500 75 10 -
Iron, cast white 7700 1420 75 10 -
Iron, wrought 7850 1810 60 14 60
Lead 11340 600 35 21 43
Magnesium 1740 924 150 4 43
Manganin 8500 - 22 45 0.1
Monel (70Ni/30Cu) 8800 1600 210 42 20
Nickel 8900 1726 59 59 60
Nickel, strong alloy 8500 1320 - - -
Phosphor bronze - - - 7 60
Platinum 21450 2042 69 11 38
Silver 10500 1230 419 1.6 40
Sodium 970 371 134 4.5 44
Solder, soft (50Pb/50Sn) 9000 490 - - -
Stainless Steel (18Cr/8Ni) 7930 1800 150 96 6
Steel, mild 7860 1700 63 15 50
Steel, piano wire 7800 1700 50 - -
Tin 7300 505 65 11 50
Titanium 4540 1950 23 53 38
Zinc 7140 693 111 5.9 40
 

Properties of Gasses

  ρ' Tb λ εr Legend:
ρ' = Density, kg m-3
Tb = Boiling point, K
λ = Thermal conductivity, W m-1K-1
εr = Relative permittivities at 293K
Acetylene (C2H2) 1.173 189 0.0184 -
Air 1.293 83 0.0241 1.000536
Ammonia (NH3) 0.771 240 0.0218 -
Argon (Ar) 1.784 87 0.0162 1.000545
Carbon dioxide (CO2) 1.977 195 0.0145 1.000986
Carbon monoxide (CO) 1.25 81 0.0232 1.0007
Chlorine (Cl2) 3.124 238 0.0072 -
Cyanogen (C2N2) 2.337 252 - -
Deuterium - - - 1.00027
Ethylene (C2H4) 1.26 170 0.0164 -
Helium (He) 0.179 4.25 0.1415 1.00007
Hydrogen (H2) 0.09 20.35 0.1684 1.00027
Hydrogen Chloride (HCl) 1.64 189 - -
Hydrogen sulphide (H2S) 1.538 211 0.012 -
Methane (CH4) 0.717 109 0.0302 -
Neon - - - 1.000127
Nitric oxide (NO) 1.34 121 0.0238 -
Nitrogen (N2) 1.25 77 0.0243 1.00058
Nitrous oxide (N2O) 1.978 183 0.0151 -
Oxygen (O2) 1.428 90 0.0244 1.00053
Sulphur dioxide (SO2) 2.927 263 0.0077 1.00082
Water vapour (273 K H2O) 0.8 - 0.0158 1.0006

 

Properties of Liquids (at 293 K)

  ρ' Tm Tb λ εr Legend:
ρ’ = Density, kg m-3
Tm = Melting point, K
Tb = Boiling point, K
λ = Thermal conductivity, W m-1K-1
εr = Relative permittivities at 293K
Acetic acid (C2H4O2) 1049 290 391 0.18 -
Acetone (C3H6O) 780 178 330 0.161 21.3
Benzene (C6H6) 879 279 353 0.14 2.28
Bromine (Br) 3100 266 332 - -
Carbon disulphide (CS2) 1293 162 319 0.144 -
Carbon tetrachloride (CCl4) 1632 250 350 0.103 2.17
Chloroform (CHCL3) 1490 210 334 0.121 -
Caster oil - - - - 4.5
Ether,diethyl (C4H10O) 714 157 308 0.127 4.34
Ethyl alcohol (C2H6O) 489 156 352 0.177 24.7
Glycerine - - - - 43
Glycerol (C3H8O3) 1262 293 563 0.27 -
Mercury (Hg) 13546 234 630 7.96 -
Methyl alcohol (CH4O) 791 179 337 0.201 -
Nitrobenzene (C6H5NO2) 1175 279 484 0.16 35.7
Olive oil 920 - 570 0.17 -
Paraffin,medical - - - - 2.2
Paraffin oil 800 - - 0.15 -
Pentane - - - - 1.83
Phenol (C6H60) 1073 314 455 - -
Silicon oil - - - - 2.2
Toluene (C7H8) 867 178 384 0.134 -
Turpentine 870 263 429 0.136 2.23
Water (H2O) 998 273 373 0.591 80.37
Water,sea 1025 264 377 - -
 
 

Properties of Semiconductors

  Germanium Silicon
Crystal Structure diamond diamond
Bonding covalent covalent
Lattice constant 5.6575 5.4307
Atomic volume, m3 kg-1 mol-1 13.5x10-3 12.0x10-3
Density, kg m-3 5.32x103 2.33x103
Cohesive energy, J kg-1 mol-1 3.72x108 4.39x108
Melting point, oC 958.5 1412
Mobility, m2 V-1 s-1 electrons 0.38
holes 0.18
electrons 0.19
holes 0.05
Energy gap, eV (at 20 oC) 0.67 1.107
Density of states effective mass electrons 0.35 me
holes 0.56 me
electrons 0.58 me
holes 1.06 me
a, mm mK-1 5.75 7.6
 
 

Properties of Commercial Permanent Magnetic Materials

  Composition Remanance Coercivity BxH  
  Al Ni Co Cu Nb Br, T BHC
A m-3
(BH)max J m-3 Remarks
Alnico IV H 12 26 8 2 - 0.6 63000 10x103 isotropic
Ticonal C 8 13.5 24 3 0.6 1.26 52000 430 isotropic
Column 8 13.5 24 3 0.5 1.35 64000 64 columnar
Pt-Co alloy - - 23 - - 0.45 210000 300 ductile
Barium Ferrite - - - - - 0.2 135000 7550 isotropic
(BaO6Fe2O3Co5Sm) - - - - - 0.85 600000 140000  
Elongated single domain
magnet (Fe50%Co50%)
- - - - - 0.905 80000 40 mechanically weak

If you notice any errors or omissions in the tables, please add a comment below.


Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



Lightning Protection and Earth Electrode Resistance

Most installations involve some form of lightning protection system which is connected to an earth electrode.  The function of the earth electrode is to...

Understanding Motor Duty Rating

One of the comments on my Motor Starting Series was asking for something on duty cycles. Here it is. As a purchaser of a motor, you have responsibility...

Load Flow Study – how they work

A load flow study is the analysis of an electrical network carried out by an electrical engineer. The purpose is to understand how power flows around...

Calculating Cable Fault Ratings

When selecting a cable, the performance of the cable under fault conditions is an important consideration. It is important that calculations be carried...

Battery Cars A to Z

Battery powered cars are a hot topic and widely debated. The pros, cons, issues and time frames can be talked about endlessly. An article by the Telegraph...

3 Phase Loads

Three phase systems are derived from three separate windings, either connected in delta or star (wye). Each winding can be treated separately, leading...

Lighting Design - An Introduction

From the earliest times, humans have found ways to create light. Pre-historic peoples used natural materials (moss, grass, etc.) soaked in animal fat and...

Nikola Tesla

Nikola Tesla was born exactly at midnight on July 10, 1856 in the tiny village of Smiljan, Lika in Croatia. In his late teens, Tesla left the village to...

Variable Frequency Drive

Variable frequency drives are widely used to control the speed of ac motors.  This note looks at the mechanisms which enable drive units to control the...

Understanding Circuit Breaker Markings

IEC 60947 is the circuit breaker standard and covers the marking of breakers in detail. Any manufacturer following this standard should comply with the...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note