Dielectric loss in cables 

By on

cableSection
Cable cross section showing
insulation
 
Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectrics (insulating materials for example) when subjected to a varying electric field, will have some energy loss.   The varying electric field causes small realignment of weakly bonded molecules, which lead to the production of heat.  The amount of loss increases as the voltage level is increased.  For low voltage cables, the loss is usually insignificant and is generally ignored.  For higher voltage cables, the loss and heat generated can become important and needs to be taken into consideration.

Dielectric loss is measured using what is known as the loss tangent or tan delta (tan δ).  In simple terms, tan delta is the tangent of the angle between the alternating field vector and the loss component of the material.  The higher the value of tan δ the greater the dielectric loss will be.  For a list of tan δ values for different insulating material, please see the Cable Insulation Properties note.  

Note: in d.c. cables with a static electric field, there is no dielectric loss.  Hence the consideration of dielectric loss only applies to a.c. cables.

Cable Voltage

Dielectric loss only really become significant and needs to be taken into account at higher voltages.  IEC 60287 "Electric Cables - Calculation of the current rating", suggests that dielectric loss need only be considered for cables above the following voltage levels:

  Cable Type   U0, kV
Butyl Rubber 18
EDR 63.5
Impregnated Paper (oil or gas-filled) 63.5
Impregnated Paper (solid) 38
PE (high and low density) 127
PVC 6
XLPE (filled) 63.5
XLPE (unfilled) 127

 

Cable Dielectric Loss

Cable Capacitance

Cable capacitance can be obtained from manufacturers or for circular conductors calculated using the following:

  C= ε 18ln( D i d c ) 10 9 F. m 1

Given the tan δ and capacitance of the cable, the dielectric loss is easily calculated:

  W d =ω C U 0 2 tan δ

It is possible to use the above for other conductor shapes if the geometric mean is substituted for Di and dc.

Symbols

dc - diameter of conductor, mm
Di - external diameter of insulation, mm
C - cable capacitance per unit length, F.m-1
U0 - cable rated voltage to earth,  V
Wd - dielectric loss per unit length, W.m-1
tan δ - loss factor for insulation
ε - insulation relative permitivity
ω - angular frequency (2πf)

See Also



Steven McFadyen's avatar Steven McFadyen

Steven has over twenty five years experience working on some of the largest construction projects. He has a deep technical understanding of electrical engineering and is keen to share this knowledge. About the author

myElectrical Engineering

comments powered by Disqus



How a Digital Substation Works

Traditionally substations have used circuit breakers, current transformers (CT), voltage transformers (VT) and protection relays all wired together using...

Induction Motor Equivalent Circuit

Induction motors are frequently used in both industrial and domestic applications.  Within the induction motor, an electrical current in the rotor is induced...

Restricted Earth Fault Protection

The windings of many medium and small sized transformers are protected by restricted earth fault (REF) systems. The illustration shows the principal of...

9 power supply issues solved by using a UPS

Installation of a UPS can help in reducing problems due to issues with the power supply.  A lot of people relate this to nine key issues.  Depending on...

Three Phase Power Simplified

A single phase system is perhaps the most common type of system most people are familiar with. This is what people have in their homes and what appliances...

Michael Faraday (the father of electrical engineering)

Famed English chemist and physicist Michael Faraday was born on September 22, 1791, in Newington Butts, a suburb of Surrey just south of the London Bridge...

Voltage Levels – Confused?

I was having a conversation the other day about voltage levels.  While everyone was in agreement that low voltage was 1000 V and less, there was more confusion...

Our internet address and Vanity URLs

Visitors who like to type web address rather then click menus may be interested in how our URL structure works.

Lightning Risk Assessment (IEC 62305)

IEC 62305 'Protection against lightning' requires a risk assessment be carried out to determine the characteristics of any lightning protection system...

How to Check a Circuit is Dead

If you want to check a circuit is dead (not live), you should always use the three point method. First check a known live circuit, then check the dead...

Have some knowledge to share

If you have some expert knowledge or experience, why not consider sharing this with our community.  

By writing an electrical note, you will be educating our users and at the same time promoting your expertise within the engineering community.

To get started and understand our policy, you can read our How to Write an Electrical Note